Browse Source

added ndpred chapter

main
sp 6 months ago
parent
commit
b6821f399c
  1. 6
      compile
  2. 2
      main.tex
  3. 1
      natural_deduction_predicate_logic/0001.tex
  4. 10
      natural_deduction_predicate_logic/0001_sol.tex
  5. 1
      natural_deduction_predicate_logic/0002.tex
  6. 9
      natural_deduction_predicate_logic/0002_sol.tex
  7. 1
      natural_deduction_predicate_logic/0003.tex
  8. 21
      natural_deduction_predicate_logic/0003_sol.tex
  9. 1
      natural_deduction_predicate_logic/0004.tex
  10. 10
      natural_deduction_predicate_logic/0004_sol.tex
  11. 1
      natural_deduction_predicate_logic/0005.tex
  12. 12
      natural_deduction_predicate_logic/0005_sol.tex
  13. 1
      natural_deduction_predicate_logic/0006.tex
  14. 1
      natural_deduction_predicate_logic/0007.tex
  15. 12
      natural_deduction_predicate_logic/0007_sol.tex
  16. 18
      natural_deduction_predicate_logic/0008.tex
  17. 13
      natural_deduction_predicate_logic/0008_sol.tex
  18. 1
      natural_deduction_predicate_logic/0009.tex
  19. 11
      natural_deduction_predicate_logic/0009_sol.tex
  20. 1
      natural_deduction_predicate_logic/0010.tex
  21. 14
      natural_deduction_predicate_logic/0010_sol.tex
  22. 1
      natural_deduction_predicate_logic/0011.tex
  23. 14
      natural_deduction_predicate_logic/0011_sol.tex
  24. 1
      natural_deduction_predicate_logic/0012.tex
  25. 13
      natural_deduction_predicate_logic/0012_sol.tex
  26. 1
      natural_deduction_predicate_logic/0013.tex
  27. 14
      natural_deduction_predicate_logic/0013_sol.tex
  28. 1
      natural_deduction_predicate_logic/0014.tex
  29. 15
      natural_deduction_predicate_logic/0014_sol.tex
  30. 4
      natural_deduction_predicate_logic/1001.tex
  31. 1
      natural_deduction_predicate_logic/1002.tex
  32. 14
      natural_deduction_predicate_logic/1002_sol.tex
  33. 2
      natural_deduction_predicate_logic/1003.tex
  34. 20
      natural_deduction_predicate_logic/1003_sol.tex
  35. 1
      natural_deduction_predicate_logic/1004.tex
  36. 18
      natural_deduction_predicate_logic/1004_sol.tex
  37. 1
      natural_deduction_predicate_logic/1005.tex
  38. 15
      natural_deduction_predicate_logic/1005_sol.tex
  39. 1
      natural_deduction_predicate_logic/1006.tex
  40. 27
      natural_deduction_predicate_logic/1006_sol.tex
  41. 1
      natural_deduction_predicate_logic/1007.tex
  42. 24
      natural_deduction_predicate_logic/1007_sol.tex
  43. 1
      natural_deduction_predicate_logic/1008.tex
  44. 12
      natural_deduction_predicate_logic/1008_sol.tex
  45. 1
      natural_deduction_predicate_logic/1009.tex
  46. 15
      natural_deduction_predicate_logic/1009_sol.tex
  47. 1
      natural_deduction_predicate_logic/1010.tex
  48. 15
      natural_deduction_predicate_logic/1010_sol.tex
  49. 1
      natural_deduction_predicate_logic/1011.tex
  50. 13
      natural_deduction_predicate_logic/1011_sol.tex
  51. 1
      natural_deduction_predicate_logic/1012.tex
  52. 17
      natural_deduction_predicate_logic/1012_sol.tex
  53. 14
      natural_deduction_predicate_logic/1013.tex
  54. 14
      natural_deduction_predicate_logic/1013_sol.tex
  55. 24
      natural_deduction_predicate_logic/1014.tex
  56. 23
      natural_deduction_predicate_logic/1014_sol.tex
  57. 1
      natural_deduction_predicate_logic/1015.tex
  58. 13
      natural_deduction_predicate_logic/1015_sol.tex
  59. 5
      natural_deduction_predicate_logic/2001.tex
  60. 27
      natural_deduction_predicate_logic/2001_sol.tex
  61. 5
      natural_deduction_predicate_logic/2002.tex
  62. 17
      natural_deduction_predicate_logic/2002_sol.tex
  63. 5
      natural_deduction_predicate_logic/2003.tex
  64. 7
      natural_deduction_predicate_logic/2003_sol.tex
  65. 2
      natural_deduction_predicate_logic/2004.tex
  66. 14
      natural_deduction_predicate_logic/2004_sol.tex
  67. 2
      natural_deduction_predicate_logic/2005.tex
  68. 15
      natural_deduction_predicate_logic/2005_sol.tex
  69. 2
      natural_deduction_predicate_logic/2006.tex
  70. 14
      natural_deduction_predicate_logic/2006_sol.tex
  71. 2
      natural_deduction_predicate_logic/2007.tex
  72. 20
      natural_deduction_predicate_logic/2007_sol.tex
  73. 1
      natural_deduction_predicate_logic/2008.tex
  74. 6
      natural_deduction_predicate_logic/2999.tex
  75. 14
      natural_deduction_predicate_logic/9999_sol.tex
  76. 8
      natural_deduction_predicate_logic/multiple_choice/4_1_fol_lect.tex
  77. 8
      natural_deduction_predicate_logic/multiple_choice/4_1_fol_lect_sol.tex
  78. 151
      natural_deduction_predicate_logic/natural_deduction_predicate_logic.tex
  79. 1
      natural_deduction_predicate_logic/practical_questions/0_10_prac.tex
  80. 5
      natural_deduction_predicate_logic/practical_questions/0_1_prac.tex
  81. 1
      natural_deduction_predicate_logic/practical_questions/0_2_prac.tex
  82. 1
      natural_deduction_predicate_logic/practical_questions/0_3_prac.tex
  83. 1
      natural_deduction_predicate_logic/practical_questions/0_4_prac.tex
  84. 1
      natural_deduction_predicate_logic/practical_questions/0_5_prac.tex
  85. 1
      natural_deduction_predicate_logic/practical_questions/0_6_prac.tex
  86. 1
      natural_deduction_predicate_logic/practical_questions/0_7_prac.tex
  87. 1
      natural_deduction_predicate_logic/practical_questions/0_8_prac.tex
  88. 1
      natural_deduction_predicate_logic/practical_questions/0_9_prac.tex
  89. 1
      natural_deduction_predicate_logic/practical_questions/1_1_fol_lect.tex
  90. 9
      natural_deduction_predicate_logic/practical_questions/1_1_fol_lect_sol.tex
  91. 1
      natural_deduction_predicate_logic/practical_questions/1_1_fol_self.tex
  92. 1
      natural_deduction_predicate_logic/practical_questions/1_2_fol_lect.tex
  93. 21
      natural_deduction_predicate_logic/practical_questions/1_2_fol_lect_sol.tex
  94. 1
      natural_deduction_predicate_logic/practical_questions/1_2_fol_self.tex
  95. 1
      natural_deduction_predicate_logic/practical_questions/2_1_fol_lect.tex
  96. 10
      natural_deduction_predicate_logic/practical_questions/2_1_fol_lect_sol.tex
  97. 1
      natural_deduction_predicate_logic/practical_questions/2_1_fol_self.tex
  98. 1
      natural_deduction_predicate_logic/practical_questions/2_2_fol_lect.tex
  99. 12
      natural_deduction_predicate_logic/practical_questions/2_2_fol_lect_sol.tex
  100. 1
      natural_deduction_predicate_logic/practical_questions/2_2_fol_self.tex

6
compile

@ -9,9 +9,7 @@ SINK=/dev/null
VALID_ARGS="abdh" VALID_ARGS="abdh"
BURST=0 BURST=0
DEBUG=0
ANNOTATE=0
DEBUG=0 ANNOTATE=0
printUsage() { printUsage() {
printf "A shell wrapper for this questionnaire using latexmk.\n" printf "A shell wrapper for this questionnaire using latexmk.\n"
printf "Currently this wrapper supports compiling of the whole script and a burst mode,\nas well as three different <version>s: 'blank', solution, spacing and all which will compile all three in one run.\n\n" printf "Currently this wrapper supports compiling of the whole script and a burst mode,\nas well as three different <version>s: 'blank', solution, spacing and all which will compile all three in one run.\n\n"
@ -104,7 +102,7 @@ compile_wrapper() {
compile_chapter() { compile_chapter() {
#for chapter in smtzthree proplogic satsolver ndpred predlogic ndpred smt bdd eqchecking symbenc temporal #for chapter in smtzthree proplogic satsolver ndpred predlogic ndpred smt bdd eqchecking symbenc temporal
for chapter in eqchecking
for chapter in ndpred
do do
set_chapter "\\chapter${chapter}true" set_chapter "\\chapter${chapter}true"
compile_wrapper "$chapter" "$@" compile_wrapper "$chapter" "$@"

2
main.tex

@ -107,7 +107,7 @@
\fi \fi
\ifchapterndpred \ifchapterndpred
\setsectionnum{5}
\setsectionnum{7}
\section{Natural Deduction for Predicate Logic} \section{Natural Deduction for Predicate Logic}
\input{natural_deduction_predicate_logic/natural_deduction_predicate_logic.tex} \input{natural_deduction_predicate_logic/natural_deduction_predicate_logic.tex}
\pagebreak \pagebreak

1
natural_deduction_predicate_logic/0001.tex

@ -0,0 +1 @@
\item \lect $\forall x \; \big(P(x) \imp Q(x)\big), \forall x \; P(x)\ent \forall x \; Q(x).$

10
natural_deduction_predicate_logic/0001_sol.tex

@ -0,0 +1,10 @@
\begin{logicproof}{1}
\forall x \; \big(P(x) \imp Q(x)\big) & prem.\\
\forall x \; P(x) & prem.\\
\begin{subproof}
\llap{$x_0\quad$} P(x_0) \imp Q(x_0) & $\forall \mathrm{e}$ 1 \\
P(x_0) & $\forall \mathrm{e}$ 2 \\
Q(x_0) & $\imp \mathrm{e}$ 3,4
\end{subproof}
\forall x \; Q(x) & $\forall \mathrm{i}$ 3-5
\end{logicproof}

1
natural_deduction_predicate_logic/0002.tex

@ -0,0 +1 @@
\item \lect $\forall x \; P(x) \land \forall x \; (P(y) \imp Q(x)) \quad \ent \quad Q(z)$

9
natural_deduction_predicate_logic/0002_sol.tex

@ -0,0 +1,9 @@
\setlength\subproofhorizspace{1em}
\begin{logicproof}{0}
\forall x \; P(x) \land \forall x \; (P(y) \imp Q(x)) & prem.\\
\forall x \; P(x) & $\land \mathrm{e}_1$ 1\\
\forall x \; (P(y) \imp Q(x)) & $\land \mathrm{e}_2$ 1\\
P(y) & $\forall \mathrm{e}$ 2\\
P(y) \imp Q(z) & $\forall \mathrm{e}$ 3\\
Q(z) & $\imp \mathrm{e}$ 5,4
\end{logicproof}

1
natural_deduction_predicate_logic/0003.tex

@ -0,0 +1 @@
\item \lect $\forall x \; P(x) \lor \forall x \; Q(x) \quad \ent \quad \forall y \; (P(y) \lor Q(y))$

21
natural_deduction_predicate_logic/0003_sol.tex

@ -0,0 +1,21 @@
\setlength\subproofhorizspace{1.7em}
\begin{logicproof}{2}
\forall x \; P(x) \lor \forall x \; Q(x) & prem.\\
\begin{subproof}
\forall x \; P(x) & ass.\\
\begin{subproof}
\llap{$t\enspace \;$} P(t) & $\forall \mathrm{e}$ 2\\
P(t) \lor Q(t) & $\lor \mathrm{i}_1$ 3
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\forall \mathrm{i}$ 3-4
\end{subproof}
\begin{subproof}
\forall x \; Q(x) & ass.\\
\begin{subproof}
\llap{$s\enspace \;$} Q(s) & $\forall \mathrm{e}$ 6\\
P(s) \lor Q(s) & $\lor \mathrm{i}_2$ 7
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\forall \mathrm{i}$ 7-8
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\lor \mathrm{e}$ 1,2-5,6-9
\end{logicproof}

1
natural_deduction_predicate_logic/0004.tex

@ -0,0 +1 @@
\item \ifassignmentsheet \points{2} \fi $\forall x \; (P(x) \imp Q(y)), \forall y \; (P(y) \land R(x)) \quad \ent \quad \exists x \; Q(x))$

10
natural_deduction_predicate_logic/0004_sol.tex

@ -0,0 +1,10 @@
\setlength\subproofhorizspace{1em}
\begin{logicproof}{0}
\forall x \; (P(x) \imp Q(y)) & prem.\\
\forall y \; (P(y) \land R(x)) & prem.\\
P(t) \imp Q(y) & $\forall \mathrm{e}$ 1\\
P(t) \land R(x) & $\forall \mathrm{e}$ 2\\
P(t) & $\land \mathrm{e}_1$ 4\\
Q(y) & $\imp \mathrm{e}$ 3\\
\exists x \; Q(x) & $\exists \mathrm{i}$ 6
\end{logicproof}

1
natural_deduction_predicate_logic/0005.tex

@ -0,0 +1 @@
\item \ifassignmentsheet \points{3} \fi $\forall a \forall b \; (P(a) \land Q(b)) \quad \ent \quad \forall a \exists b \; (P(a) \lor Q(b))$

12
natural_deduction_predicate_logic/0005_sol.tex

@ -0,0 +1,12 @@
\setlength\subproofhorizspace{1.1em}
\begin{logicproof}{1}
\forall a \forall b \; (P(a) \land Q(b)) & prem.\\
\begin{subproof}
\llap{$t\enspace \;$} \forall b \; (P(s) \land Q(b)) & $\forall \mathrm{e}$ 1\\
P(s) \land Q(t) & $\forall \mathrm{e}$ 2\\
P(s) & $\land \mathrm{e}_1$ 3\\
P(s) \lor Q(t) & $\lor \mathrm{i}_1$ 4\\
\exists b \; (P(s) \lor Q(b)) & $\exists \mathrm{i}$ 5
\end{subproof}
\forall a \exists b \; (P(a) \lor Q(b)) & $\forall \mathrm{i}$ 2-6
\end{logicproof}

1
natural_deduction_predicate_logic/0006.tex

@ -0,0 +1 @@
\item \lect Explain the $\exists$-elimination rule ($\exists$e). Why does this rule require a box and what does it mean that $x_0$ is \textit{fresh}?

1
natural_deduction_predicate_logic/0007.tex

@ -0,0 +1 @@
\item \lect $\exists x \; \lnot P(x), \forall x \; \lnot Q(x) \quad \ent \quad \exists x \; (\lnot P(x) \land \lnot Q(x))$

12
natural_deduction_predicate_logic/0007_sol.tex

@ -0,0 +1,12 @@
\setlength\subproofhorizspace{1.6em}
\begin{logicproof}{1}
\exists x \; \lnot P(x) & prem.\\
\forall x \; \lnot Q(x) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} \lnot P(x_0) & ass.\\
\lnot Q(x_0) & $\forall \mathrm{e}$ 2\\
\lnot P(x_0) \land \lnot Q(x_0) & $\land \mathrm{i}$ 3,4\\
\exists x \; (\lnot P(x) \land \lnot Q(x)) & $\exists \mathrm{i}$ 5
\end{subproof}
\exists x \; (\lnot P(x) \land \lnot Q(x)) & $\exists \mathrm{e}$ 3-6
\end{logicproof}

18
natural_deduction_predicate_logic/0008.tex

@ -0,0 +1,18 @@
\item \ifassignmentsheet \points{4} \fi Consider the following natural deduction proof for the sequent $$\forall x \; (P(x)\imp Q(x)), \quad \exists x \; P(x) \quad \ent \quad \forall x Q(x).$$
Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1.1em}
\begin{logicproof}{2}
\forall x \; (P(x)\imp Q(x)) & prem.\\
\exists x \; P(x) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} &\\
\begin{subproof}
P(x_0) & ass.\\
P(x_0) \imp Q(x_0) & $\forall \mathrm{e}$ 1\\
Q(x_0) & $\imp \mathrm{e}$, 4,5
\end{subproof}
\forall x \; Q(x) & $\forall \mathrm{i}$ 4-6
\end{subproof}
\forall x \; Q(x) & $\exists \mathrm{e}$ 2,3-7
\end{logicproof}

13
natural_deduction_predicate_logic/0008_sol.tex

@ -0,0 +1,13 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a,b \}\\
P^\mathcal{M} =& \; \{ a \}\\
Q^\mathcal{M} =& \; \{ a \}\\
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \forall x \; (P(x)\imp Q(x)), \quad \exists x \; P(x)$\\
$\mathcal{M} \nmodels \forall x Q(x)$

1
natural_deduction_predicate_logic/0009.tex

@ -0,0 +1 @@
\item \lect $\exists x \; (P(x) \imp Q(y)), \quad \forall x \; P(x) \quad \ent \quad Q(y)$

11
natural_deduction_predicate_logic/0009_sol.tex

@ -0,0 +1,11 @@
\setlength\subproofhorizspace{1em}
\begin{logicproof}{2}
\exists x \; (P(x) \imp Q(y)) & prem.\\
\forall x \; P(x) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) \imp Q(y) & ass.\\
P(x_0) & $\forall \mathrm{e}$ 2\\
Q(y) & $\imp \mathrm{e}$ 3,4
\end{subproof}
Q(y) & $\exists \mathrm{e}$ 3-5
\end{logicproof}

1
natural_deduction_predicate_logic/0010.tex

@ -0,0 +1 @@
\item \lect $\forall x \; \lnot (P(x) \land Q(x)) \quad \ent \quad \lnot \exists x \; (P(x) \land Q(x))$

14
natural_deduction_predicate_logic/0010_sol.tex

@ -0,0 +1,14 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\forall x \; \lnot (P(x) \land Q(x)) & prem.\\
\begin{subproof}
\exists x \; (P(x) \land Q(x)) & ass.\\
\begin{subproof}
\llap{$t\enspace \;$} P(t) \land Q(t) & ass.\\
\lnot P(t) \land Q(t) & $\forall \mathrm{e}$ 1\\
\bot & $\lnot \mathrm{e}$ 3,4
\end{subproof}
\bot & $\exists \mathrm{e}$ 3-5
\end{subproof}
\lnot \exists x \; (P(x) \land Q(x)) & $\lnot \mathrm{i}$ 2-6
\end{logicproof}

1
natural_deduction_predicate_logic/0011.tex

@ -0,0 +1 @@
\item \lect $\lnot \exists x \; (P(x) \land Q(x)) \quad \ent \quad \forall x \; \lnot (P(x) \land Q(x))$

14
natural_deduction_predicate_logic/0011_sol.tex

@ -0,0 +1,14 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\lnot \exists x \; (P(x) \land Q(x)) & prem.\\
\begin{subproof}
\llap{$t\enspace \;$} & \\
\begin{subproof}
P(t) \land Q(t) & ass.\\
\exists x \; \lnot (P(x) \land Q(x)) & $\exists \mathrm{i}$ 3\\
\bot & $\lnot \mathrm{e}$ 1,4
\end{subproof}
\lnot P(t) \land Q(t) & $\lnot \mathrm{i}$ 3-5
\end{subproof}
\forall x \; \lnot (P(x) \land Q(x)) & $\forall \mathrm{i}$ 2-6
\end{logicproof}

1
natural_deduction_predicate_logic/0012.tex

@ -0,0 +1 @@
\item \ifassignmentsheet \points{2} \fi $\exists x \; \lnot P(x), \exists x \; \lnot Q(x) \quad \ent \quad \exists x \; (\lnot P(x) \land \lnot Q(x))$

13
natural_deduction_predicate_logic/0012_sol.tex

@ -0,0 +1,13 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a,b \}\\
P^\mathcal{M} =& \; \{ a \}\\
Q^\mathcal{M} =& \; \{ b \}\\
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \exists x \; \lnot P(x), \exists x \; \lnot Q(x)$\\
$\mathcal{M} \nmodels \exists x \; (\lnot P(x) \land \lnot Q(x))$

1
natural_deduction_predicate_logic/0013.tex

@ -0,0 +1 @@
\item \lect $\exists x \; (P(x) \imp Q(y)), \quad \exists x \; P(x) \quad \ent \quad Q(y)$

14
natural_deduction_predicate_logic/0013_sol.tex

@ -0,0 +1,14 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a,b \}\\
P^\mathcal{M} =& \; \{ a \}\\
Q^\mathcal{M} =& \; \{ a \} \\
y \leftarrow \; b \\
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \exists x \; (P(x) \imp Q(y)), \quad \exists x \; P(x)$\\
$\mathcal{M} \nmodels Q(y)$

1
natural_deduction_predicate_logic/0014.tex

@ -0,0 +1 @@
\item \lect $\forall x ( P(x) \land Q(x)) \ent \forall x P(x) \land \forall x Q(x) $

15
natural_deduction_predicate_logic/0014_sol.tex

@ -0,0 +1,15 @@
\setlength\subproofhorizspace{1.7em}
\begin{logicproof}{1}
\forall x \;( P(x) \land Q(x) ) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) \land Q(x_0) & $\forall \mathrm{e}$ 1\\
P(x_0) & $\land \mathrm{e}$ 2
\end{subproof}
\forall x \; P(x) & $\forall \mathrm{i} 2-3$\\
\begin{subproof}
\llap{$x_1\enspace \;$} P(x_1) \land Q(x_1) & $\forall \mathrm{e}$ 1\\
Q(x_1) & $\land \mathrm{e}$ 5
\end{subproof}
\forall x \; Q(x) & $\forall \mathrm{i} 5-6$\\
\forall x \; P(x) \land \forall x \; Q(x) & $\land \mathrm{i}$ 4,7
\end{logicproof}

4
natural_deduction_predicate_logic/1001.tex

@ -0,0 +1,4 @@
\item \self Explain the $\forall$-introduction rule
and the $\forall$-elimination rule.
Explain why one rule needs a box while the other one does not.
What does it mean that $x_0$ needs to be fresh?

1
natural_deduction_predicate_logic/1002.tex

@ -0,0 +1 @@
\item \self $\forall x \; (P(x) \land Q(x)) \quad \ent \quad \forall x \; ( (Q(x) \lor R(x)) \land (R(x) \lor P(x)) )$

14
natural_deduction_predicate_logic/1002_sol.tex

@ -0,0 +1,14 @@
\begin{logicproof}{2}
\forall x \; (P(x) \land Q(x)) &\prem \\
\begin{subproof}
& \freshVar{$x_0$} \\
P(x_0) \land Q(x_0) & \foralle 1 $x_0$ \\
P(x_0) & \ande{1}1 \\
Q(x_0) & \ande{2}1 \\
R(x_0) \lor P(x_0) & \ori 4 \\
Q(x_0) \lor R(x_0) & \ori 5 \\
(Q(x_0) \lor R(x_0)) \land (R(x) \lor P(x)) & \andi 6,7
\end{subproof}
\forall x \; ((Q(x) \lor R(x)) \land (R(x) \lor P(x))) & \foralli 2-8
\end{logicproof}

2
natural_deduction_predicate_logic/1003.tex

@ -0,0 +1,2 @@
\item \ifassignmentsheet \points{3} \fi
$\forall x \; (P(x)\lor Q(x)),\quad \forall x \; (\lnot P(x)) \quad \ent \quad \forall x \; (Q(x))$

20
natural_deduction_predicate_logic/1003_sol.tex

@ -0,0 +1,20 @@
\begin{logicproof}{2}
\forall x \; (P(x) \lor Q(x)) &\prem \\
\forall x \; (\lnot P(x)) &\prem \\
\begin{subproof}
& \freshVar{$x_0$}\\
P(x_0) \lor Q(x_0) &$\foralle 1$ $x_0$ \\
\lnot P(x_0) &$\foralle 2$ \\
\begin{subproof}
P(x_0) &\assum \\
\bot &$\nege 5,6$ \\
Q(x_0) &$\bote 7$
\end{subproof}
\begin{subproof}
Q(x_0) &\assum
\end{subproof}
Q(x_0) &$\ore 4,6-8,9$
\end{subproof}
\forall x \; Q(x) &$\foralli 3-10 $
\end{logicproof}

1
natural_deduction_predicate_logic/1004.tex

@ -0,0 +1 @@
\item \self $\exists x \; (Q(x) \imp R(x)),\quad \exists x \; (P(x)\land Q(x)) \quad \ent \quad \exists x \; (P(x) \land R(x))$

18
natural_deduction_predicate_logic/1004_sol.tex

@ -0,0 +1,18 @@
\begin{logicproof}{2}
\exists x \; (Q(x) \imp R(x)) &\prem \\
\exists x \; (P(x)\land Q(x)) &\prem \\
\begin{subproof}
Q(x_0) \imp R(x_0) &\assum~\freshVar{$x_0$} \\
\begin{subproof}
P(x_0) \land Q(x_0) &\assum~\freshVar{$x_0$}\\
P(x_0) &\ande{1} 4\\
Q(x_0) &\ande{2} 4\\
R(x_0) &\impe 5,3\\
P(x_0) \land R(x_0) & \andi 5,7\\
\exists x (P(x) \land R(x)) & \existi 8
\end{subproof}
\exists x \; (P(x) \land R(x)) & \existe 2,4-9
\end{subproof}
\exists x \; (P(x) \land R(x)) & \existe 1,3-10
\end{logicproof}

1
natural_deduction_predicate_logic/1005.tex

@ -0,0 +1 @@
\item \self $\forall x \; (Q(x) \imp R(x)),\quad \exists x \; (P(x)\land Q(x)) \quad \ent \quad \exists x \; (P(x) \land R(x))$

15
natural_deduction_predicate_logic/1005_sol.tex

@ -0,0 +1,15 @@
\begin{logicproof}{2}
\forall x \; (Q(x) \imp R(x)) &\prem \\
\exists x \; (P(x)\land Q(x)) &\prem \\
\begin{subproof}
P(x_0) \land Q(x_0) & \assum~\freshVar{$x_0$}\\
Q(x_0) \imp R(x_0) & \foralle 1 $x_0$\\
P(x_0) & \ande{1} 3 \\
Q(x_0) & \ande{2} 3 \\
R(x_0) & \impe 6,4\\
P(x_0) \land R(x_0) & \andi 5,7\\
\exists x \; (P(x) \land R(x)) & \existi 8
\end{subproof}
\exists x \; (P(x) \land R(x)) &\existe 2,3-9
\end{logicproof}

1
natural_deduction_predicate_logic/1006.tex

@ -0,0 +1 @@
\item \self $\lnot \exists x \forall y \; (P(x) \land Q(y)) \quad \ent \quad \forall x \exists y \; \lnot (P(x) \land Q(y))$

27
natural_deduction_predicate_logic/1006_sol.tex

@ -0,0 +1,27 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{4}
\lnot \exists x \forall y \; (P(x) \land Q(y)) & \prem\\
\begin{subproof}
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$ $\freshVar{$x_0$}$\\
\exists x \forall y (P(x)\land Q(y)) & $\existi2$\\
\bot & $\nege1,3$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\negi2-4$\\
\begin{subproof}
\lnot \exists y \lnot (P(x_0)\land Q(y)) & $\assum$\\
\begin{subproof}
\begin{subproof}
\lnot (P(x_0)\land Q(y_0)) & $\assum$ $\freshVar{$y_0$}$\\
\exists y \lnot (P(x_0) \land Q(y)) & $\existi7$\\
\bot & $\nege6,8$
\end{subproof}
P(x_0) \land Q(y_0) & $PBC 7-9$
\end{subproof}
\forall y (P(x_0)\land Q(y)) & $\foralli7-10$\\
\bot & $\nege5,11$
\end{subproof}
\exists y \lnot (P(x_0)\land Q(y)) & $PBC 6-12$
\end{subproof}
\forall x \exists y \; \lnot (P(x) \land Q(y)) & $\foralli2-13$
\end{logicproof}

1
natural_deduction_predicate_logic/1007.tex

@ -0,0 +1 @@
\item \self $\forall x \exists y \; \lnot (P(x) \land Q(y)) \quad \ent \quad \lnot \exists x \forall y \; (P(x) \land Q(y))$

24
natural_deduction_predicate_logic/1007_sol.tex

@ -0,0 +1,24 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\forall x \exists y \; \lnot (P(x) \land Q(y)) & \prem\\
\exists y \lnot (P(x_0)\land Q(y)) & $\foralle1$\\
\begin{subproof}
\lnot (P(x_0)\land Q(y_0)) & $\assum$ $\freshVar{$y_0$}$\\
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$\\
P(x_0)\land Q(y_0) & $\foralle4$\\
\bot & $\nege3,5$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\negi4-6$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\existe2,3-7$\\
\begin{subproof}
\exists x \forall y (P(x)\land Q(y)) & $\assum$\\
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$ $\freshVar{$x_0$}$\\
\bot & $\nege8,10$
\end{subproof}
\bot & $\existe9,10-11$
\end{subproof}
\lnot \exists x \forall y \; (P(x) \land Q(y)) & $\negi9-12$
\end{logicproof}

1
natural_deduction_predicate_logic/1008.tex

@ -0,0 +1 @@
\item \self $\lnot \exists x \; \lnot P(x) \quad \ent \quad \forall x \; \lnot P(x)$

12
natural_deduction_predicate_logic/1008_sol.tex

@ -0,0 +1,12 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a \}\\
P^\mathcal{M} =& \; \{ a\}
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \lnot \exists x \lnot P(x)$\\
$\mathcal{M} \nmodels \forall x \lnot P(x)$

1
natural_deduction_predicate_logic/1009.tex

@ -0,0 +1 @@
\item \self $P(x) \lor Q(y),\quad P(x)\imp R(z),\quad Q(y) \imp R(z) \quad \ent \quad R(z)$

15
natural_deduction_predicate_logic/1009_sol.tex

@ -0,0 +1,15 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{1}
P(x) \lor Q(y) &\prem\\
P(x)\imp R(z) &\prem\\
Q(y) \imp R(z) &\prem\\
\begin{subproof}
P(x) &$\assum$\\
R(z) &$\impe2,4$
\end{subproof}
\begin{subproof}
Q(y) &$\assum$\\
R(z) &$\impe3,6$
\end{subproof}
R(z) &$\ore1,4-5,6-7$
\end{logicproof}

1
natural_deduction_predicate_logic/1010.tex

@ -0,0 +1 @@
\item \self $\exists y \forall x \; (P(x,y)) \quad \ent \quad \forall x \exists y \; (P(x,y))$

15
natural_deduction_predicate_logic/1010_sol.tex

@ -0,0 +1,15 @@
This sequent is provable.
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\exists y \forall x P(x,y) & \prem \\
\begin{subproof}
\forall x P(x,y_0) & $\assum$ $\freshVar{$y_0$}$ \\
\begin{subproof}
P(x_0,y_0) & $\foralle 2$ $\freshVar{$x_0$}$ \\
\exists y P(x_0,y) & $\existi 3$
\end{subproof}
\forall x \exists y P(x,y) & $\foralli3-4$
\end{subproof}
\forall x \exists y P(x,y) & $\existe 1,2-5$
\end{logicproof}

1
natural_deduction_predicate_logic/1011.tex

@ -0,0 +1 @@
\item \self $\exists a \forall b \; (S(b,a) \land T(b,a)) \quad \ent \quad \forall b \forall a \; (S(b,a) \land T(b,a))$

13
natural_deduction_predicate_logic/1011_sol.tex

@ -0,0 +1,13 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ 0,1 \}\\
S^\mathcal{M} =& \; \{ (0,1),(1,1) \}\\
T^\mathcal{M} =& \; \{ (0,1),(1,1) \}
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \exists a \forall b \; (S(b,a) \land T(b,a))$\\
$\mathcal{M} \nmodels \forall b \forall a \; (S(b,a) \land T(b,a))$

1
natural_deduction_predicate_logic/1012.tex

@ -0,0 +1 @@
\item \self $ P(y) \imp \forall x Q(x), \enspace\exists x \lnot Q(x) \ent \exists x \lnot P(x) $

17
natural_deduction_predicate_logic/1012_sol.tex

@ -0,0 +1,17 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
P(y) \imp \forall x Q(x) & \prem\\
\exists x \lnot Q(x) & \prem\\
\begin{subproof}
P(y) & $\assum$\\
\forall x Q(x) & $\impe1,3$\\
\begin{subproof}
\lnot Q(x_0) &$\assum$ $\freshVar{$x_0$}$\\
Q(x_0) &$\foralle4$\\
\bot &$\nege5,6$
\end{subproof}
\bot &$\existe2,5-7$
\end{subproof}
\lnot P(y) &$\negi3-8$\\
\exists x \lnot P(x) &$\existi9$
\end{logicproof}

14
natural_deduction_predicate_logic/1013.tex

@ -0,0 +1,14 @@
\item Consider the following natural deduction proof for the sequent $$\exists x \; \lnot P(x) \quad \ent \quad \lnot \forall x \; P(x).$$
Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1em}
\begin{logicproof}{1}
\exists x \; \lnot P(x) & prem.\\
\begin{subproof}
\forall x \; P(x) & ass.\\
P(x_0) & $\forall \mathrm{e}$ 2\\
\exists x \; P(x) & $\exists \mathrm{i}$ 3\\
\bot & $\lnot \mathrm{e}$ 1,4
\end{subproof}
\lnot \forall x \; P(x) & $\lnot \mathrm{e}$ 2-5
\end{logicproof}

14
natural_deduction_predicate_logic/1013_sol.tex

@ -0,0 +1,14 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\exists x \; \lnot P(x) & \prem\\
\begin{subproof}
\forall x \; P(x) & $\assum$\\
P(x_0) & $\foralle2$\\
\begin{subproof}
\lnot P(x_0) & $\assum$ $\freshVar{$x_0$}$\\
\bot & $\nege3,4$
\end{subproof}
\bot & $\existe1,3-5$
\end{subproof}
\lnot \forall x \; P(x) & $\negi2-5$
\end{logicproof}

24
natural_deduction_predicate_logic/1014.tex

@ -0,0 +1,24 @@
\item \self Consider the following natural deduction proof for the sequent $$\quad \exists x \; P(x) \lor \exists x \; Q(x) \quad \ent \quad \exists x \; (P(x)\lor Q(x)).$$
Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1.7em}
\begin{logicproof}{2}
\exists x \; P(x) \lor \exists x \; Q(x) & prem.\\
\begin{subproof}
\exists x \; P(x) & ass.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) & ass.\\
P(x_0) \lor Q(x_0) & $\lor \mathrm{i}_1$ 3
\end{subproof}
\exists x \; (P(x) \lor Q(x)) & $\exists \mathrm{e}$ 2,3-4
\end{subproof}
\begin{subproof}
\exists x \; Q(x) & ass.\\
\begin{subproof}
\llap{$x_0\enspace \;$} Q(x_0) & ass.\\
P(x_0) \lor Q(x_0) & $\lor \mathrm{i}_2$ 7
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\exists \mathrm{e}$ 6,7-8
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\lor \mathrm{e}$ 1,2-5,6-9
\end{logicproof}

23
natural_deduction_predicate_logic/1014_sol.tex

@ -0,0 +1,23 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\exists x \; P(x) \lor \exists x \; Q(x) & \prem\\
\begin{subproof}
\exists x \; P(x) & $\assum$\\
\begin{subproof}
P(x_0) & $\assum$ $\freshVar{$x_0$}$\\
P(x_0) \lor Q(x_0) & $\ori3$\\
\exists x \; (P(x) \lor Q(x)) & $\existi4$
\end{subproof}
\exists x \; (P(x) \lor Q(x)) & $\existe2,3-5$
\end{subproof}
\begin{subproof}
\exists x \; Q(x) & $\assum$\\
\begin{subproof}
Q(x_0) & $\assum$ $\freshVar{$x_0$}$\\
P(x_0) \lor Q(x_0) & $\ori8$\\
\exists x \; (P(x) \lor Q(x)) & $\existi9$
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\existe7,8-10$
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\ore1,2-6,7-11$
\end{logicproof}

1
natural_deduction_predicate_logic/1015.tex

@ -0,0 +1 @@
\item \self $\forall x \exists y \; (P(x) \imp Q(y)), P(s) \quad \ent \quad \exists x \forall y \; (\lnot P(x) \lor Q(y))$

13
natural_deduction_predicate_logic/1015_sol.tex

@ -0,0 +1,13 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a,b \}\\
P^\mathcal{M} =& \; \{ a,b \}\\
Q^\mathcal{M} =& \; \{ a \}
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \forall x \exists y \; (P(x) \imp Q(y)), P(s)$\\
$\mathcal{M} \nmodels \exists x \forall y \; (\lnot P(x) \lor Q(y))$

5
natural_deduction_predicate_logic/2001.tex

@ -0,0 +1,5 @@
\item
\ifassignmentsheet \points{4}
\else \prac
\fi
$\lnot \exists x~P(x) \lor \lnot \exists y~Q(y) \entails \forall z~\lnot(Q(z) \land P(z))$

27
natural_deduction_predicate_logic/2001_sol.tex

@ -0,0 +1,27 @@
\setlength{\subproofhorizspace}{1.5em}
\begin{logicproof}{3}
\lnot \exists x~P(x) \lor \lnot \exists y~Q(y) &prem \\
\begin{subproof}
\begin{subproof}
\hspace*{-2.75em}
\llap{$z_0\enspace \;$} \: \hspace{2.75em} Q(z_0) \land P(z_0) &assum \\
\begin{subproof}
\lnot \exists x~P(x) & assum \\
P(z_0) &$\land \mathrm{e} 2$ \\
\exists x~P(x) &$\exists \mathrm{i} 4$ \\
\bot &$\lnot \mathrm{e} 3,5$
\end{subproof}
\begin{subproof}
\lnot \exists y~Q(y) & assum \\
Q(z_0) &$\land \mathrm{e} 2$ \\
\exists y~Q(y) &$\exists \mathrm{i} 8$ \\
\bot &$\lnot \mathrm{e} 7,9$
\end{subproof}
\bot &$\lor \mathrm{e} 1,3-6,7-10$
\end{subproof}
\lnot(Q(z_0) \land P(z_0)) &$\lnot \mathrm{i} 3-11$
\end{subproof}
\forall z \; \lnot(Q(z) \land P(z)) &$\forall \mathrm{i} 3-12$
\end{logicproof}

5
natural_deduction_predicate_logic/2002.tex

@ -0,0 +1,5 @@
\item
\ifassignmentsheet \points{2}
\else \prac
\fi
$\lnot \exists x \; Q(x)\quad \ent \quad \forall x \; \lnot Q(x)$

17
natural_deduction_predicate_logic/2002_sol.tex

@ -0,0 +1,17 @@
\setlength{\subproofhorizspace}{1.5em}
\begin{logicproof}{2}
\lnot \exists x \; Q(x) &prem \\
\begin{subproof}
\hspace*{-1.5em}
\llap{$x_0\enspace \;$}
\begin{subproof}
Q(x_0) &assum \\
\exists x \; Q(x) &$\exists \mathrm{i} 2$ \\
\bot &$\lnot \mathrm{e} 1,3$
\end{subproof}
\lnot Q(x_0) &$\lnot \mathrm{i} 2-4$
\end{subproof}
\forall x \; \lnot Q(x) &$\forall \mathrm{i} 2-5$
\end{logicproof}

5
natural_deduction_predicate_logic/2003.tex

@ -0,0 +1,5 @@
\item
\ifassignmentsheet \points{2}
\else \prac
\fi
$\forall x \; (P(x) \land Q(x)) \quad \ent \quad \exists x \; (P(x) \lor Q(x))$

7
natural_deduction_predicate_logic/2003_sol.tex

@ -0,0 +1,7 @@
\begin{logicproof}{0}
\forall x \; (P(x) \land Q(x)) &prem \\
P(x_0) \land Q(x_0) &$\forall \mathrm{e} 1$ \\
P(x_0) &$\land \mathrm{e} 2$ \\
P(x_0) \lor Q(x_0) &$\lor \mathrm{i} 3$ \\
\exists x \; (P(x) \lor Q(x)) &$\exists \mathrm{i} 4$
\end{logicproof}

2
natural_deduction_predicate_logic/2004.tex

@ -0,0 +1,2 @@
\item \ifassignmentsheet \points{2} \else \prac \fi
$\exists x~(P(x) \implies Q(x)) , ~\lnot Q(z) \entails \lnot P(z)$

14
natural_deduction_predicate_logic/2004_sol.tex

@ -0,0 +1,14 @@
This sequent is not provable.
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a,z \}\\
P^\mathcal{M} =& \; \{ a,z \}\\
Q^\mathcal{M} =& \; \{ a\}
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \exists x \; P(x) \imp Q(x)$\\
$\mathcal{M} \models \lnot Q(z)$\\
$\mathcal{M} \nmodels \lnot P(z)$

2
natural_deduction_predicate_logic/2005.tex

@ -0,0 +1,2 @@
\item \ifassignmentsheet \points{2} \else \prac \fi
$\exists x \; (Q(y) \imp P(x)) \quad \ent \quad Q(y) \imp \exists x \; P(x)$

15
natural_deduction_predicate_logic/2005_sol.tex

@ -0,0 +1,15 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{3}
\exists x \;(Q(y) \imp P(x)) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} Q(y) \imp P(x_0) & ass.\\
\begin{subproof}
Q(y) & ass.\\
P(x_0) & $\imp \mathrm{e}$ 3,2 \\
\exists x \; P(x) & $\exists \mathrm{i}$ 4
\end{subproof}
Q(y) \imp \exists x \; P(x) & $\imp \mathrm{i}$ 3-5
\end{subproof}
Q(y) \imp \exists x \; P(x) & $\exists \mathrm{e}$ 1, 2-6
\end{logicproof}

2
natural_deduction_predicate_logic/2006.tex

@ -0,0 +1,2 @@
\item \ifassignmentsheet \points{2} \else \prac \fi
$ \exists x \; (P(x) \land Q(x)) \quad\ent\quad \exists x \; P(x) \land \exists x \; Q(x)$

14
natural_deduction_predicate_logic/2006_sol.tex

@ -0,0 +1,14 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{1}
\exists x \;(P(x) \land Q(x)) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) \land Q(x_0) & ass.\\
P(x_0) & $\land\mathrm{e} 2$\\
Q(x_0) & $\land\mathrm{e} 2$\\
\exists x \; P(x) & $\exists\mathrm{i} 3$\\
\exists x \; Q(x) & $\exists\mathrm{i} 4$\\
\exists x \; P(x) \land \exists \; Q(x) & $\land\mathrm{i} 5,6$
\end{subproof}
\exists x \;P(x) \land \exists x \; Q(x)) & $\exists\mathrm{e} 1,2-7$
\end{logicproof}

2
natural_deduction_predicate_logic/2007.tex

@ -0,0 +1,2 @@
\item \ifassignmentsheet \points{2} \fi
$ \exists x \; (P(x) \lor Q(x)) \quad\ent\quad \exists x \; P(x) \lor \exists x \; Q(x)$

20
natural_deduction_predicate_logic/2007_sol.tex

@ -0,0 +1,20 @@
\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\exists x \;(P(x) \lor Q(x)) & prem.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) \lor Q(x_0) & ass.\\
\begin{subproof}
P(x_0) & ass.\\
\exists x \; P(x) &$ \exists\mathrm{i} 3$\\
\exists x \; P(x) \lor \exists x \; Q(x) &$ \lor\mathrm{i} 4$
\end{subproof}
\begin{subproof}
Q(x_0) & ass.\\
\exists x \; Q(x) &$ \exists\mathrm{i} 6$\\
\exists x \; P(x) \lor \exists x \; Q(x) &$ \lor\mathrm{i} 7$
\end{subproof}
\exists x \;P(x) \lor \exists x \; Q(x) &$ \lor\mathrm{e} 2,3-8$
\end{subproof}
\exists x \;P(x) \lor \exists x \; Q(x) & $\exists\mathrm{e} 1,2-9$
\end{logicproof}

1
natural_deduction_predicate_logic/2008.tex

@ -0,0 +1 @@
\item \ifassignmentsheet \points{3} \fi $ \exists x \; \lnot P(x) \quad \ent \quad \lnot \forall x \; P(x).$

6
natural_deduction_predicate_logic/2999.tex

@ -0,0 +1,6 @@
\item
\ifassignmentsheet \points{2}
\else \prac
\fi
TBD

14
natural_deduction_predicate_logic/9999_sol.tex

@ -0,0 +1,14 @@
\begin{logicproof}{1}
\forall x \; (P(x) \land Q(x)) &prem \\
\begin{subproof}
\llap{$x_0\enspace \;$} \: P(x_0) \land Q(x_0) &$\forall \mathrm{e} 1 $\\
P(x_0) &$\land \mathrm{e} 2$
\end{subproof}
\forall x \; P(x) &$\forall \mathrm{i} 2-3 $\\
\begin{subproof}
\llap{$x_1\enspace \;$} \: P(x_1) \land Q(x_1) &$\forall \mathrm{e} 1 $\\
Q(x_1) &$\land \mathrm{e} 5$
\end{subproof}
\forall x \; Q(x) &$\forall \mathrm{i} 5-6 $\\
\forall x \; P(x) \land \forall x \; Q(x) &$\land \mathrm{i} 4,7$
\end{logicproof}

8
natural_deduction_predicate_logic/multiple_choice/4_1_fol_lect.tex

@ -0,0 +1,8 @@
\item \lect Considering \textit{Quantifier Equivalences} in \textit{Natural Deduction} for \textit{Predicate Logic}, tick all statements in the list, that are equivalent.
\begin{itemize}
\item[$\square$] $\forall x \; \phi \equiv \exists x \; \lnot \phi$
\item[$\square$] $\forall x \; \phi \equiv \lnot \exists x \; \lnot \phi$
\item[$\square$] $\lnot \forall x \; \phi \equiv \exists x \; \lnot \phi$
\item[$\square$] $\exists x \; \lnot \phi \equiv \lnot \forall x \; \lnot \phi$
\end{itemize}

8
natural_deduction_predicate_logic/multiple_choice/4_1_fol_lect_sol.tex

@ -0,0 +1,8 @@
\item \lect Considering \textit{Quantifier Equivalences} in \textit{Natural Deduction} for \textit{Predicate Logic}, tick all statements in the list, that are equivalent.
\begin{itemize}
\item[$\square$] $\forall x \; \phi \equiv \exists x \; \lnot \phi$
\item[$\ticked$] $\forall x \; \phi \equiv \lnot \exists x \; \lnot \phi$
\item[$\ticked$] $\lnot \forall x \; \phi \equiv \exists x \; \lnot \phi$
\item[$\square$] $\exists x \; \lnot \phi \equiv \lnot \forall x \; \lnot \phi$
\end{itemize}

151
natural_deduction_predicate_logic/natural_deduction_predicate_logic.tex

@ -0,0 +1,151 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ndDescription
\begin{questionSection}{Natural Deduction Rules}
\question{natural_deduction_predicate_logic/0001.tex}
{natural_deduction_predicate_logic/0001_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0002.tex}
{natural_deduction_predicate_logic/0002_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0014.tex}
{natural_deduction_predicate_logic/0014_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0003.tex}
{natural_deduction_predicate_logic/0003_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0004.tex}
{natural_deduction_predicate_logic/0004_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0007.tex}
{natural_deduction_predicate_logic/0007_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0008.tex}
{natural_deduction_predicate_logic/0008_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0009.tex}
{natural_deduction_predicate_logic/0009_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0010.tex}
{natural_deduction_predicate_logic/0010_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0012.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/0013.tex}
{natural_deduction_predicate_logic/0013_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/2003.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/1003.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/2002.tex}
{natural_deduction_predicate_logic/2002_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/2001.tex}
{natural_deduction_predicate_logic/2001_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/2005.tex}
{natural_deduction_predicate_logic/2005_sol.tex}
{3cm}
\ifsolution \clearpage\fi
\question{natural_deduction_predicate_logic/2004.tex}
{natural_deduction_predicate_logic/2004_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/2006.tex}
{natural_deduction_predicate_logic/2006_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/2007.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/1001.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/1002.tex}
{natural_deduction_predicate_logic/1002_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1004.tex}
{natural_deduction_predicate_logic/1004_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1005.tex}
{natural_deduction_predicate_logic/1005_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1006.tex}
{natural_deduction_predicate_logic/1006_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1007.tex}
{natural_deduction_predicate_logic/1007_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1008.tex}
{natural_deduction_predicate_logic/1008_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1009.tex}
{natural_deduction_predicate_logic/1009_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1010.tex}
{natural_deduction_predicate_logic/1010_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1011.tex}
{natural_deduction_predicate_logic/1011_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1012.tex}
{natural_deduction_predicate_logic/1012_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1013.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/1014.tex}
{natural_deduction_predicate_logic/1014_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/1015.tex}
{natural_deduction_predicate_logic/1015_sol.tex}
{3cm}
\question{natural_deduction_predicate_logic/0005.tex}
{no_solution}
{3cm}
\question{natural_deduction_predicate_logic/2008.tex}
{no_solution}
{3cm}
\end{questionSection}

1
natural_deduction_predicate_logic/practical_questions/0_10_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[3.5 Point]} $\exists x \; P(x) \imp \exists x \; Q(x) \quad \ent \quad \exists x \; (P(x) \imp Q(x))$

5
natural_deduction_predicate_logic/practical_questions/0_1_prac.tex

@ -0,0 +1,5 @@
\item \prac \textbf{[2 Point]}
\begin{enumerate}
\item $(\forall x \; (\lnot A(x)) \lor (\exists x \; (B(x)) \quad \ent \quad \forall x \; (\lnot A(x) \lor B(x))$
\item $(\forall x \; (\lnot A(x)) \lor (\exists x \; (B(x)) \quad \ent \quad \exists x \; (\lnot A(x) \lor B(x))$
\end{enumerate}

1
natural_deduction_predicate_logic/practical_questions/0_2_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[2 Point]} $ \exists x P(x) \lor \exists x Q(x) \ent \exists x( P(x) \lor Q(x))$

1
natural_deduction_predicate_logic/practical_questions/0_3_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[3 Point]} $\exists b \; (a \imp B(b)) \quad \ent \quad a \imp \exists b \; B(b)$

1
natural_deduction_predicate_logic/practical_questions/0_4_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[1 Point]} $\ent \quad (x = y + y) \land (y = 1 \lor y = 2)$

1
natural_deduction_predicate_logic/practical_questions/0_5_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[3 Point]} $\exists x \; (S(x) \imp T(x)), \lnot T(z) \land \lnot T(y) \quad \ent \quad \lnot S(y)$

1
natural_deduction_predicate_logic/practical_questions/0_6_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[1 Point]} $\exists x \forall y \; f(x) = f(y) \quad \ent \quad \exists x \forall y \; x = y $

1
natural_deduction_predicate_logic/practical_questions/0_7_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[1 Point]} $\lnot \forall a \; \lnot \lnot (a = f(g(a))) \quad \ent \quad \lnot \lnot \exists a \; \lnot(a = f(g(a)))$

1
natural_deduction_predicate_logic/practical_questions/0_8_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[3 Point]} $\forall r \; U(r) \land \forall r \; (S(r) \imp T(r)) \quad \ent \quad \exists r \; \lnot T(x) \imp \exists r (\lnot S(r) \land U(r))$

1
natural_deduction_predicate_logic/practical_questions/0_9_prac.tex

@ -0,0 +1 @@
\item \prac \textbf{[3.5 Point]} $\exists a \; (P(a) \lor Q(a)),\quad \exists a \; P(a) \imp R(c),\quad \exists b \; Q(b) \imp R(c) \quad \ent \quad R(c)$

1
natural_deduction_predicate_logic/practical_questions/1_1_fol_lect.tex

@ -0,0 +1 @@
\item \lect $\forall x \; P(x) \land \forall x \; (P(y) \imp Q(x)) \quad \ent \quad Q(z)$

9
natural_deduction_predicate_logic/practical_questions/1_1_fol_lect_sol.tex

@ -0,0 +1,9 @@
\setlength\subproofhorizspace{1em}
\begin{logicproof}{0}
\forall x \; P(x) \land \forall x \; (P(y) \imp Q(x)) & prem.\\
\forall x \; P(x) & $\land \mathrm{e}_1$ 1\\
\forall x \; (P(y) \imp Q(x)) & $\land \mathrm{e}_2$ 1\\
P(y) & $\forall \mathrm{e}$ 2\\
P(y) \imp Q(z) & $\forall \mathrm{e}$ 3\\
Q(z) & $\imp \mathrm{e}$ 5,4
\end{logicproof}

1
natural_deduction_predicate_logic/practical_questions/1_1_fol_self.tex

@ -0,0 +1 @@
\item \self $\forall x \; (P(x) \land Q(x)) \quad \ent \quad \forall x \; ( (Q(x) \lor R(x)) \land (R(x) \lor P(x)) )$

1
natural_deduction_predicate_logic/practical_questions/1_2_fol_lect.tex

@ -0,0 +1 @@
\item \lect $\forall x \; P(x) \lor \forall x \; Q(x) \quad \ent \quad \forall y \; (P(y) \lor Q(y))$

21
natural_deduction_predicate_logic/practical_questions/1_2_fol_lect_sol.tex

@ -0,0 +1,21 @@
\setlength\subproofhorizspace{1.7em}
\begin{logicproof}{2}
\forall x \; P(x) \lor \forall x \; Q(x) & prem.\\
\begin{subproof}
\forall x \; P(x) & ass.\\
\begin{subproof}
\llap{$t\enspace \;$} P(t) & $\forall \mathrm{e}$ 2\\
P(t) \lor Q(t) & $\lor \mathrm{i}_1$ 3
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\forall \mathrm{i}$ 3-4
\end{subproof}
\begin{subproof}
\forall x \; Q(x) & ass.\\
\begin{subproof}
\llap{$s\enspace \;$} Q(s) & $\forall \mathrm{e}$ 6\\
P(s) \lor Q(s) & $\lor \mathrm{i}_2$ 7
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\forall \mathrm{i}$ 7-8
\end{subproof}
\forall y \; (P(y) \lor Q(y)) & $\imp \mathrm{e}$ 1,2-5,6-9
\end{logicproof}

1
natural_deduction_predicate_logic/practical_questions/1_2_fol_self.tex

@ -0,0 +1 @@
\item \self $\forall x \; (P(x)\lor Q(x)),\quad \forall x \; (\lnot P(x)) \quad \ent \quad \forall x \; (Q(x))$

1
natural_deduction_predicate_logic/practical_questions/2_1_fol_lect.tex

@ -0,0 +1 @@
\item \lect $\forall x \; (P(x) \imp Q(y)), \forall y \; (P(y) \land R(x)) \quad \ent \quad \exists x \; Q(x))$

10
natural_deduction_predicate_logic/practical_questions/2_1_fol_lect_sol.tex

@ -0,0 +1,10 @@
\setlength\subproofhorizspace{1em}
\begin{logicproof}{0}
\forall x \; (P(x) \imp Q(y)) & prem.\\
\forall y \; (P(y) \land R(x)) & prem.\\
P(t) \imp Q(y) & $\forall \mathrm{e}$ 1\\
P(t) \land R(x) & $\forall \mathrm{e}$ 2\\
P(t) & $\land \mathrm{e}_1$ 4\\
Q(y) & $\imp \mathrm{e}$ 3\\
\exists x \; Q(x) & $\exists \mathrm{i}$ 6
\end{logicproof}

1
natural_deduction_predicate_logic/practical_questions/2_1_fol_self.tex

@ -0,0 +1 @@
\item \self $\exists x \; (Q(x) \imp R(x)),\quad \exists x \; (P(x)\land Q(x)) \quad \ent \quad \exists x \; (P(x) \land R(x))$

1
natural_deduction_predicate_logic/practical_questions/2_2_fol_lect.tex

@ -0,0 +1 @@
\item \lect $\forall a \forall b \; (P(a) \land Q(b)) \quad \ent \quad \forall a \exists b \; (P(a) \lor Q(b))$

12
natural_deduction_predicate_logic/practical_questions/2_2_fol_lect_sol.tex

@ -0,0 +1,12 @@
\setlength\subproofhorizspace{1.1em}
\begin{logicproof}{1}
\forall a \forall b \; (P(a) \land Q(b)) & prem.\\
\begin{subproof}
\llap{$t\enspace \;$} \forall b \; (P(s) \land Q(b)) & $\forall \mathrm{e}$ 1\\
P(s) \land Q(t) & $\forall \mathrm{e}$ 2\\
P(s) & $\land \mathrm{e}_1$ 3\\
P(s) \lor Q(t) & $\lor \mathrm{i}_1$ 4\\
\exists b \; (P(s) \lor Q(b)) & $\exists \mathrm{i}$ 5
\end{subproof}
\forall a \exists b \; (P(a) \lor Q(b)) & $\forall \mathrm{i}$ 2-6
\end{logicproof}

1
natural_deduction_predicate_logic/practical_questions/2_2_fol_self.tex

@ -0,0 +1 @@
\item \self $\forall x \; (Q(x) \imp R(x)),\quad \exists x \; (P(x)\land Q(x)) \quad \ent \quad \exists x \; (P(x) \land R(x))$

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save