You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

27 lines
1.4 KiB

\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{4}
\lnot \exists x \forall y \; (P(x) \land Q(y)) & \prem\\
\begin{subproof}
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$ $\freshVar{$x_0$}$\\
\exists x \forall y (P(x)\land Q(y)) & $\existi2$\\
\bot & $\nege1,3$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\negi2-4$\\
\begin{subproof}
\lnot \exists y \lnot (P(x_0)\land Q(y)) & $\assum$\\
\begin{subproof}
\begin{subproof}
\lnot (P(x_0)\land Q(y_0)) & $\assum$ $\freshVar{$y_0$}$\\
\exists y \lnot (P(x_0) \land Q(y)) & $\existi7$\\
\bot & $\nege6,8$
\end{subproof}
P(x_0) \land Q(y_0) & $PBC 7-9$
\end{subproof}
\forall y (P(x_0)\land Q(y)) & $\foralli7-10$\\
\bot & $\nege5,11$
\end{subproof}
\exists y \lnot (P(x_0)\land Q(y)) & $PBC 6-12$
\end{subproof}
\forall x \exists y \; \lnot (P(x) \land Q(y)) & $\foralli2-13$
\end{logicproof}