You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

24 lines
1.2 KiB

\setlength\subproofhorizspace{1.3em}
\begin{logicproof}{2}
\forall x \exists y \; \lnot (P(x) \land Q(y)) & \prem\\
\exists y \lnot (P(x_0)\land Q(y)) & $\foralle1$\\
\begin{subproof}
\lnot (P(x_0)\land Q(y_0)) & $\assum$ $\freshVar{$y_0$}$\\
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$\\
P(x_0)\land Q(y_0) & $\foralle4$\\
\bot & $\nege3,5$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\negi4-6$
\end{subproof}
\lnot \forall y (P(x_0)\land Q(y)) & $\existe2,3-7$\\
\begin{subproof}
\exists x \forall y (P(x)\land Q(y)) & $\assum$\\
\begin{subproof}
\forall y (P(x_0)\land Q(y)) & $\assum$ $\freshVar{$x_0$}$\\
\bot & $\nege8,10$
\end{subproof}
\bot & $\existe9,10-11$
\end{subproof}
\lnot \exists x \forall y \; (P(x) \land Q(y)) & $\negi9-12$
\end{logicproof}