You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
\setlength\subproofhorizspace{1.3em} \begin{logicproof}{2} \forall x \exists y \; \lnot (P(x) \land Q(y)) & \prem\\ \exists y \lnot (P(x_0)\land Q(y)) & $\foralle1$\\ \begin{subproof} \lnot (P(x_0)\land Q(y_0)) & $\assum$ $\freshVar{$y_0$}$\\ \begin{subproof} \forall y (P(x_0)\land Q(y)) & $\assum$\\ P(x_0)\land Q(y_0) & $\foralle4$\\ \bot & $\nege3,5$ \end{subproof} \lnot \forall y (P(x_0)\land Q(y)) & $\negi4-6$ \end{subproof} \lnot \forall y (P(x_0)\land Q(y)) & $\existe2,3-7$\\ \begin{subproof} \exists x \forall y (P(x)\land Q(y)) & $\assum$\\ \begin{subproof} \forall y (P(x_0)\land Q(y)) & $\assum$ $\freshVar{$x_0$}$\\ \bot & $\nege8,10$ \end{subproof} \bot & $\existe9,10-11$ \end{subproof} \lnot \exists x \forall y \; (P(x) \land Q(y)) & $\negi9-12$ \end{logicproof}
|