Browse Source

.. missing files

Former-commit-id: f05bc337a5
tempestpy_adaptions
TimQu 8 years ago
parent
commit
82a3be3d74
  1. 101
      src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.cpp
  2. 58
      src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h
  3. 101
      src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.cpp
  4. 47
      src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h
  5. 14
      test/functional/transformer/EndComponentEliminatorTest.cpp

101
src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.cpp

@ -0,0 +1,101 @@
#include "src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h"
#include "src/adapters/CarlAdapter.h"
#include "src/models/sparse/Mdp.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/utility/constants.h"
#include "src/utility/vector.h"
#include "src/settings//SettingsManager.h"
#include "src/settings/modules/GeneralSettings.h"
#include "src/settings/modules/MultiObjectiveSettings.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseModelType, typename GeometryValueType>
SparsePcaaAchievabilityQuery<SparseModelType, GeometryValueType>::SparsePcaaAchievabilityQuery(SparsePcaaPreprocessorReturnType<SparseModelType>& preprocessorResult) : SparsePcaaQuery<SparseModelType, GeometryValueType>(preprocessorResult) {
STORM_LOG_ASSERT(preprocessorResult.queryType==SparsePcaaPreprocessorReturnType<SparseModelType>::QueryType::Achievability, "Invalid query Type");
initializeThresholdData();
// Set the maximum gap between lower and upper bound of the weightVectorChecker result.
// This is the maximal edge length of the box we have to consider around each computed point
// We pick the gap such that the maximal distance between two points within this box is less than the given precision divided by two.
typename SparseModelType::ValueType gap = storm::utility::convertNumber<typename SparseModelType::ValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision());
gap /= (storm::utility::one<typename SparseModelType::ValueType>() + storm::utility::one<typename SparseModelType::ValueType>());
gap /= storm::utility::sqrt(static_cast<typename SparseModelType::ValueType>(this->objectives.size()));
this->weightVectorChecker->setMaximumLowerUpperBoundGap(gap);
}
template <class SparseModelType, typename GeometryValueType>
void SparsePcaaAchievabilityQuery<SparseModelType, GeometryValueType>::initializeThresholdData() {
thresholds.reserve(this->objectives.size());
strictThresholds = storm::storage::BitVector(this->objectives.size(), false);
for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
thresholds.push_back(storm::utility::convertNumber<GeometryValueType>(*this->objectives[objIndex].threshold));
strictThresholds.set(objIndex, this->objectives[objIndex].thresholdIsStrict);
}
}
template <class SparseModelType, typename GeometryValueType>
std::unique_ptr<CheckResult> SparsePcaaAchievabilityQuery<SparseModelType, GeometryValueType>::check() {
bool result = this->checkAchievability();
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult(this->originalModel.getInitialStates().getNextSetIndex(0), result));
}
template <class SparseModelType, typename GeometryValueType>
bool SparsePcaaAchievabilityQuery<SparseModelType, GeometryValueType>::checkAchievability() {
// repeatedly refine the over/ under approximation until the threshold point is either in the under approx. or not in the over approx.
while(!this->maxStepsPerformed()){
WeightVector separatingVector = this->findSeparatingVector(thresholds);
this->performRefinementStep(std::move(separatingVector));
if(!checkIfThresholdsAreSatisfied(this->overApproximation)){
return false;
}
if(checkIfThresholdsAreSatisfied(this->underApproximation)){
return true;
}
}
STORM_LOG_ERROR("Could not check whether thresholds are achievable: Exceeded maximum number of refinement steps");
return false;
}
template <class SparseModelType, typename GeometryValueType>
bool SparsePcaaAchievabilityQuery<SparseModelType, GeometryValueType>::checkIfThresholdsAreSatisfied(std::shared_ptr<storm::storage::geometry::Polytope<GeometryValueType>> const& polytope) {
std::vector<storm::storage::geometry::Halfspace<GeometryValueType>> halfspaces = polytope->getHalfspaces();
for(auto const& h : halfspaces) {
GeometryValueType distance = h.distance(thresholds);
if(distance < storm::utility::zero<GeometryValueType>()) {
return false;
}
if(distance == storm::utility::zero<GeometryValueType>()) {
// In this case, the thresholds point is on the boundary of the polytope.
// Check if this is problematic for the strict thresholds
for(auto strictThreshold : strictThresholds) {
if(h.normalVector()[strictThreshold] > storm::utility::zero<GeometryValueType>()) {
return false;
}
}
}
}
return true;
}
#ifdef STORM_HAVE_CARL
template class SparsePcaaAchievabilityQuery<storm::models::sparse::Mdp<double>, storm::RationalNumber>;
template class SparsePcaaAchievabilityQuery<storm::models::sparse::MarkovAutomaton<double>, storm::RationalNumber>;
template class SparsePcaaAchievabilityQuery<storm::models::sparse::Mdp<storm::RationalNumber>, storm::RationalNumber>;
// template class SparsePcaaAchievabilityQuery<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>, storm::RationalNumber>;
#endif
}
}
}

58
src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h

@ -0,0 +1,58 @@
#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_
#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_
#include "src/modelchecker/multiobjective/pcaa/SparsePcaaQuery.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
/*
* This class represents a query for the Pareto curve approximation algorithm (Pcaa).
* It implements the necessary computations for the different query types.
*/
template <class SparseModelType, typename GeometryValueType>
class SparsePcaaAchievabilityQuery : public SparsePcaaQuery<SparseModelType, GeometryValueType> {
public:
// Typedefs for simple geometric objects
typedef std::vector<GeometryValueType> Point;
typedef std::vector<GeometryValueType> WeightVector;
/*
* Creates a new query for the Pareto curve approximation algorithm (Pcaa)
* @param preprocessorResult the result from preprocessing
*/
SparsePcaaAchievabilityQuery(SparsePcaaPreprocessorReturnType<SparseModelType>& preprocessorResult);
/*
* Invokes the computation and retrieves the result
*/
virtual std::unique_ptr<CheckResult> check() override;
private:
void initializeThresholdData();
/*
* Returns whether the given thresholds are achievable.
*/
bool checkAchievability();
/*
* Returns true iff there is one point in the given polytope that satisfies the given thresholds.
* It is assumed that the given polytope contains the downward closure of its vertices.
*/
bool checkIfThresholdsAreSatisfied(std::shared_ptr<storm::storage::geometry::Polytope<GeometryValueType>> const& polytope);
Point thresholds;
storm::storage::BitVector strictThresholds;
};
}
}
}
#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_ */

101
src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.cpp

@ -0,0 +1,101 @@
#include "src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h"
#include "src/adapters/CarlAdapter.h"
#include "src/models/sparse/Mdp.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/modelchecker/results/ParetoCurveCheckResult.h"
#include "src/utility/constants.h"
#include "src/utility/vector.h"
#include "src/settings//SettingsManager.h"
#include "src/settings/modules/MultiObjectiveSettings.h"
#include "src/settings/modules/GeneralSettings.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseModelType, typename GeometryValueType>
SparsePcaaParetoQuery<SparseModelType, GeometryValueType>::SparsePcaaParetoQuery(SparsePcaaPreprocessorReturnType<SparseModelType>& preprocessorResult) : SparsePcaaQuery<SparseModelType, GeometryValueType>(preprocessorResult) {
STORM_LOG_ASSERT(preprocessorResult.queryType==SparsePcaaPreprocessorReturnType<SparseModelType>::QueryType::Pareto, "Invalid query Type");
// Set the maximum gap between lower and upper bound of the weightVectorChecker result.
// This is the maximal edge length of the box we have to consider around each computed point
// We pick the gap such that the maximal distance between two points within this box is less than the given precision divided by two.
typename SparseModelType::ValueType gap = storm::utility::convertNumber<typename SparseModelType::ValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision());
gap /= (storm::utility::one<typename SparseModelType::ValueType>() + storm::utility::one<typename SparseModelType::ValueType>());
gap /= storm::utility::sqrt(static_cast<typename SparseModelType::ValueType>(this->objectives.size()));
this->weightVectorChecker->setMaximumLowerUpperBoundGap(gap);
}
template <class SparseModelType, typename GeometryValueType>
std::unique_ptr<CheckResult> SparsePcaaParetoQuery<SparseModelType, GeometryValueType>::check() {
// refine the approximation
exploreSetOfAchievablePoints();
// obtain the data for the checkresult
std::vector<std::vector<typename SparseModelType::ValueType>> paretoOptimalPoints;
paretoOptimalPoints.reserve(this->refinementSteps.size());
for(auto const& step : this->refinementSteps) {
paretoOptimalPoints.push_back(storm::utility::vector::convertNumericVector<typename SparseModelType::ValueType>(this->transformPointToOriginalModel(step.lowerBoundPoint)));
}
return std::unique_ptr<CheckResult>(new ParetoCurveCheckResult<typename SparseModelType::ValueType>(this->originalModel.getInitialStates().getNextSetIndex(0),
std::move(paretoOptimalPoints),
this->transformPolytopeToOriginalModel(this->underApproximation)->template convertNumberRepresentation<typename SparseModelType::ValueType>(),
this->transformPolytopeToOriginalModel(this->overApproximation)->template convertNumberRepresentation<typename SparseModelType::ValueType>()));
}
template <class SparseModelType, typename GeometryValueType>
void SparsePcaaParetoQuery<SparseModelType, GeometryValueType>::exploreSetOfAchievablePoints() {
//First consider the objectives individually
for(uint_fast64_t objIndex = 0; objIndex<this->objectives.size() && !this->maxStepsPerformed(); ++objIndex) {
WeightVector direction(this->objectives.size(), storm::utility::zero<GeometryValueType>());
direction[objIndex] = storm::utility::one<GeometryValueType>();
this->performRefinementStep(std::move(direction));
}
while(!this->maxStepsPerformed()) {
// Get the halfspace of the underApproximation with maximal distance to a vertex of the overApproximation
std::vector<storm::storage::geometry::Halfspace<GeometryValueType>> underApproxHalfspaces = this->underApproximation->getHalfspaces();
std::vector<Point> overApproxVertices = this->overApproximation->getVertices();
uint_fast64_t farestHalfspaceIndex = underApproxHalfspaces.size();
GeometryValueType farestDistance = storm::utility::zero<GeometryValueType>();
for(uint_fast64_t halfspaceIndex = 0; halfspaceIndex < underApproxHalfspaces.size(); ++halfspaceIndex) {
for(auto const& vertex : overApproxVertices) {
GeometryValueType distance = -underApproxHalfspaces[halfspaceIndex].euclideanDistance(vertex);
if(distance > farestDistance) {
farestHalfspaceIndex = halfspaceIndex;
farestDistance = distance;
}
}
}
if(farestDistance < storm::utility::convertNumber<GeometryValueType>(storm::settings::getModule<storm::settings::modules::MultiObjectiveSettings>().getPrecision())) {
// Goal precision reached!
return;
}
STORM_LOG_DEBUG("Current precision of the approximation of the pareto curve is ~" << storm::utility::convertNumber<double>(farestDistance));
WeightVector direction = underApproxHalfspaces[farestHalfspaceIndex].normalVector();
this->performRefinementStep(std::move(direction));
}
STORM_LOG_ERROR("Could not reach the desired precision: Exceeded maximum number of refinement steps");
}
#ifdef STORM_HAVE_CARL
template class SparsePcaaParetoQuery<storm::models::sparse::Mdp<double>, storm::RationalNumber>;
template class SparsePcaaParetoQuery<storm::models::sparse::MarkovAutomaton<double>, storm::RationalNumber>;
template class SparsePcaaParetoQuery<storm::models::sparse::Mdp<storm::RationalNumber>, storm::RationalNumber>;
// template class SparsePcaaParetoQuery<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>, storm::RationalNumber>;
#endif
}
}
}

47
src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h

@ -0,0 +1,47 @@
#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_
#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_
#include "src/modelchecker/multiobjective/pcaa/SparsePcaaQuery.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
/*
* This class represents a query for the Pareto curve approximation algorithm (Pcaa).
* It implements the necessary computations for the different query types.
*/
template <class SparseModelType, typename GeometryValueType>
class SparsePcaaParetoQuery : public SparsePcaaQuery<SparseModelType, GeometryValueType> {
public:
// Typedefs for simple geometric objects
typedef std::vector<GeometryValueType> Point;
typedef std::vector<GeometryValueType> WeightVector;
/*
* Creates a new query for the Pareto curve approximation algorithm (Pcaa)
* @param preprocessorResult the result from preprocessing
*/
SparsePcaaParetoQuery(SparsePcaaPreprocessorReturnType<SparseModelType>& preprocessorResult);
/*
* Invokes the computation and retrieves the result
*/
virtual std::unique_ptr<CheckResult> check() override;
private:
/*
* Performs refinement steps until the approximation is sufficiently precise
*/
void exploreSetOfAchievablePoints();
};
}
}
}
#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_ */

14
test/functional/transformer/EndComponentEliminatorTest.cpp

@ -35,17 +35,19 @@ TEST(NeutralECRemover, SimpleModelTest) {
ASSERT_NO_THROW(matrix = builder.build()); ASSERT_NO_THROW(matrix = builder.build());
storm::storage::BitVector possibleEcRows(12, true); storm::storage::BitVector possibleEcRows(12, true);
consideredRows.set(3, false);
consideredRows.set(6, false);
consideredRows.set(7, false);
consideredRows.set(8, false);
consideredRows.set(11, false);
possibleEcRows.set(3, false);
possibleEcRows.set(6, false);
possibleEcRows.set(7, false);
possibleEcRows.set(8, false);
possibleEcRows.set(11, false);
storm::storage::BitVector allowEmptyRows(5, true); storm::storage::BitVector allowEmptyRows(5, true);
allowEmptyRows.set(1, false); allowEmptyRows.set(1, false);
allowEmptyRows.set(4, false); allowEmptyRows.set(4, false);
storm::storage::BitVector subsystem(5, true);
allowEmptyRows.set(2, false);
auto res = storm::transformer::EndComponentEliminator<double>::transform(matrix, possibleEcRows, allowEmptyRows);
auto res = storm::transformer::EndComponentEliminator<double>::transform(matrix, subsystem, possibleEcRows, allowEmptyRows);
// Expected data // Expected data
storm::storage::SparseMatrixBuilder<double> expectedBuilder(8, 3, 8, true, true, 3); storm::storage::SparseMatrixBuilder<double> expectedBuilder(8, 3, 8, true, true, 3);

Loading…
Cancel
Save