diff --git a/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.cpp b/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.cpp new file mode 100644 index 000000000..a330208db --- /dev/null +++ b/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.cpp @@ -0,0 +1,101 @@ +#include "src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h" + +#include "src/adapters/CarlAdapter.h" +#include "src/models/sparse/Mdp.h" +#include "src/models/sparse/MarkovAutomaton.h" +#include "src/models/sparse/StandardRewardModel.h" +#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h" +#include "src/utility/constants.h" +#include "src/utility/vector.h" +#include "src/settings//SettingsManager.h" +#include "src/settings/modules/GeneralSettings.h" +#include "src/settings/modules/MultiObjectiveSettings.h" + +namespace storm { + namespace modelchecker { + namespace multiobjective { + + + template + SparsePcaaAchievabilityQuery::SparsePcaaAchievabilityQuery(SparsePcaaPreprocessorReturnType& preprocessorResult) : SparsePcaaQuery(preprocessorResult) { + STORM_LOG_ASSERT(preprocessorResult.queryType==SparsePcaaPreprocessorReturnType::QueryType::Achievability, "Invalid query Type"); + initializeThresholdData(); + + // Set the maximum gap between lower and upper bound of the weightVectorChecker result. + // This is the maximal edge length of the box we have to consider around each computed point + // We pick the gap such that the maximal distance between two points within this box is less than the given precision divided by two. + typename SparseModelType::ValueType gap = storm::utility::convertNumber(storm::settings::getModule().getPrecision()); + gap /= (storm::utility::one() + storm::utility::one()); + gap /= storm::utility::sqrt(static_cast(this->objectives.size())); + this->weightVectorChecker->setMaximumLowerUpperBoundGap(gap); + + } + + template + void SparsePcaaAchievabilityQuery::initializeThresholdData() { + thresholds.reserve(this->objectives.size()); + strictThresholds = storm::storage::BitVector(this->objectives.size(), false); + for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { + thresholds.push_back(storm::utility::convertNumber(*this->objectives[objIndex].threshold)); + strictThresholds.set(objIndex, this->objectives[objIndex].thresholdIsStrict); + } + } + + template + std::unique_ptr SparsePcaaAchievabilityQuery::check() { + + bool result = this->checkAchievability(); + + return std::unique_ptr(new ExplicitQualitativeCheckResult(this->originalModel.getInitialStates().getNextSetIndex(0), result)); + + } + + template + bool SparsePcaaAchievabilityQuery::checkAchievability() { + // repeatedly refine the over/ under approximation until the threshold point is either in the under approx. or not in the over approx. + while(!this->maxStepsPerformed()){ + WeightVector separatingVector = this->findSeparatingVector(thresholds); + this->performRefinementStep(std::move(separatingVector)); + if(!checkIfThresholdsAreSatisfied(this->overApproximation)){ + return false; + } + if(checkIfThresholdsAreSatisfied(this->underApproximation)){ + return true; + } + } + STORM_LOG_ERROR("Could not check whether thresholds are achievable: Exceeded maximum number of refinement steps"); + return false; + } + + + template + bool SparsePcaaAchievabilityQuery::checkIfThresholdsAreSatisfied(std::shared_ptr> const& polytope) { + std::vector> halfspaces = polytope->getHalfspaces(); + for(auto const& h : halfspaces) { + GeometryValueType distance = h.distance(thresholds); + if(distance < storm::utility::zero()) { + return false; + } + if(distance == storm::utility::zero()) { + // In this case, the thresholds point is on the boundary of the polytope. + // Check if this is problematic for the strict thresholds + for(auto strictThreshold : strictThresholds) { + if(h.normalVector()[strictThreshold] > storm::utility::zero()) { + return false; + } + } + } + } + return true; + } + +#ifdef STORM_HAVE_CARL + template class SparsePcaaAchievabilityQuery, storm::RationalNumber>; + template class SparsePcaaAchievabilityQuery, storm::RationalNumber>; + + template class SparsePcaaAchievabilityQuery, storm::RationalNumber>; + // template class SparsePcaaAchievabilityQuery, storm::RationalNumber>; +#endif + } + } +} diff --git a/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h b/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h new file mode 100644 index 000000000..0b4ca9417 --- /dev/null +++ b/src/modelchecker/multiobjective/pcaa/SparsePcaaAchievabilityQuery.h @@ -0,0 +1,58 @@ +#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_ +#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_ + +#include "src/modelchecker/multiobjective/pcaa/SparsePcaaQuery.h" + +namespace storm { + namespace modelchecker { + namespace multiobjective { + + /* + * This class represents a query for the Pareto curve approximation algorithm (Pcaa). + * It implements the necessary computations for the different query types. + */ + template + class SparsePcaaAchievabilityQuery : public SparsePcaaQuery { + public: + + // Typedefs for simple geometric objects + typedef std::vector Point; + typedef std::vector WeightVector; + + /* + * Creates a new query for the Pareto curve approximation algorithm (Pcaa) + * @param preprocessorResult the result from preprocessing + */ + SparsePcaaAchievabilityQuery(SparsePcaaPreprocessorReturnType& preprocessorResult); + + + /* + * Invokes the computation and retrieves the result + */ + virtual std::unique_ptr check() override; + + private: + + void initializeThresholdData(); + + /* + * Returns whether the given thresholds are achievable. + */ + bool checkAchievability(); + + /* + * Returns true iff there is one point in the given polytope that satisfies the given thresholds. + * It is assumed that the given polytope contains the downward closure of its vertices. + */ + bool checkIfThresholdsAreSatisfied(std::shared_ptr> const& polytope); + + + Point thresholds; + storm::storage::BitVector strictThresholds; + }; + + } + } +} + +#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAACHIEVABILITYQUERY_H_ */ diff --git a/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.cpp b/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.cpp new file mode 100644 index 000000000..14605ad28 --- /dev/null +++ b/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.cpp @@ -0,0 +1,101 @@ +#include "src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h" + +#include "src/adapters/CarlAdapter.h" +#include "src/models/sparse/Mdp.h" +#include "src/models/sparse/MarkovAutomaton.h" +#include "src/models/sparse/StandardRewardModel.h" +#include "src/modelchecker/results/ParetoCurveCheckResult.h" +#include "src/utility/constants.h" +#include "src/utility/vector.h" +#include "src/settings//SettingsManager.h" +#include "src/settings/modules/MultiObjectiveSettings.h" +#include "src/settings/modules/GeneralSettings.h" + + +namespace storm { + namespace modelchecker { + namespace multiobjective { + + template + SparsePcaaParetoQuery::SparsePcaaParetoQuery(SparsePcaaPreprocessorReturnType& preprocessorResult) : SparsePcaaQuery(preprocessorResult) { + STORM_LOG_ASSERT(preprocessorResult.queryType==SparsePcaaPreprocessorReturnType::QueryType::Pareto, "Invalid query Type"); + + // Set the maximum gap between lower and upper bound of the weightVectorChecker result. + // This is the maximal edge length of the box we have to consider around each computed point + // We pick the gap such that the maximal distance between two points within this box is less than the given precision divided by two. + typename SparseModelType::ValueType gap = storm::utility::convertNumber(storm::settings::getModule().getPrecision()); + gap /= (storm::utility::one() + storm::utility::one()); + gap /= storm::utility::sqrt(static_cast(this->objectives.size())); + this->weightVectorChecker->setMaximumLowerUpperBoundGap(gap); + + } + + template + std::unique_ptr SparsePcaaParetoQuery::check() { + + // refine the approximation + exploreSetOfAchievablePoints(); + + // obtain the data for the checkresult + std::vector> paretoOptimalPoints; + paretoOptimalPoints.reserve(this->refinementSteps.size()); + for(auto const& step : this->refinementSteps) { + paretoOptimalPoints.push_back(storm::utility::vector::convertNumericVector(this->transformPointToOriginalModel(step.lowerBoundPoint))); + } + return std::unique_ptr(new ParetoCurveCheckResult(this->originalModel.getInitialStates().getNextSetIndex(0), + std::move(paretoOptimalPoints), + this->transformPolytopeToOriginalModel(this->underApproximation)->template convertNumberRepresentation(), + this->transformPolytopeToOriginalModel(this->overApproximation)->template convertNumberRepresentation())); + + + } + + template + void SparsePcaaParetoQuery::exploreSetOfAchievablePoints() { + + //First consider the objectives individually + for(uint_fast64_t objIndex = 0; objIndexobjectives.size() && !this->maxStepsPerformed(); ++objIndex) { + WeightVector direction(this->objectives.size(), storm::utility::zero()); + direction[objIndex] = storm::utility::one(); + this->performRefinementStep(std::move(direction)); + } + + while(!this->maxStepsPerformed()) { + // Get the halfspace of the underApproximation with maximal distance to a vertex of the overApproximation + std::vector> underApproxHalfspaces = this->underApproximation->getHalfspaces(); + std::vector overApproxVertices = this->overApproximation->getVertices(); + uint_fast64_t farestHalfspaceIndex = underApproxHalfspaces.size(); + GeometryValueType farestDistance = storm::utility::zero(); + for(uint_fast64_t halfspaceIndex = 0; halfspaceIndex < underApproxHalfspaces.size(); ++halfspaceIndex) { + for(auto const& vertex : overApproxVertices) { + GeometryValueType distance = -underApproxHalfspaces[halfspaceIndex].euclideanDistance(vertex); + if(distance > farestDistance) { + farestHalfspaceIndex = halfspaceIndex; + farestDistance = distance; + } + } + } + if(farestDistance < storm::utility::convertNumber(storm::settings::getModule().getPrecision())) { + // Goal precision reached! + return; + } + STORM_LOG_DEBUG("Current precision of the approximation of the pareto curve is ~" << storm::utility::convertNumber(farestDistance)); + WeightVector direction = underApproxHalfspaces[farestHalfspaceIndex].normalVector(); + this->performRefinementStep(std::move(direction)); + } + STORM_LOG_ERROR("Could not reach the desired precision: Exceeded maximum number of refinement steps"); + } + + + + +#ifdef STORM_HAVE_CARL + template class SparsePcaaParetoQuery, storm::RationalNumber>; + template class SparsePcaaParetoQuery, storm::RationalNumber>; + + template class SparsePcaaParetoQuery, storm::RationalNumber>; + // template class SparsePcaaParetoQuery, storm::RationalNumber>; +#endif + } + } +} diff --git a/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h b/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h new file mode 100644 index 000000000..bb47d5158 --- /dev/null +++ b/src/modelchecker/multiobjective/pcaa/SparsePcaaParetoQuery.h @@ -0,0 +1,47 @@ +#ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_ +#define STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_ + +#include "src/modelchecker/multiobjective/pcaa/SparsePcaaQuery.h" + +namespace storm { + namespace modelchecker { + namespace multiobjective { + + /* + * This class represents a query for the Pareto curve approximation algorithm (Pcaa). + * It implements the necessary computations for the different query types. + */ + template + class SparsePcaaParetoQuery : public SparsePcaaQuery { + public: + + // Typedefs for simple geometric objects + typedef std::vector Point; + typedef std::vector WeightVector; + + /* + * Creates a new query for the Pareto curve approximation algorithm (Pcaa) + * @param preprocessorResult the result from preprocessing + */ + SparsePcaaParetoQuery(SparsePcaaPreprocessorReturnType& preprocessorResult); + + + /* + * Invokes the computation and retrieves the result + */ + virtual std::unique_ptr check() override; + + private: + + + /* + * Performs refinement steps until the approximation is sufficiently precise + */ + void exploreSetOfAchievablePoints(); + }; + + } + } +} + +#endif /* STORM_MODELCHECKER_MULTIOBJECTIVE_PCAA_SPARSEPCAAPARETOQUERY_H_ */ diff --git a/test/functional/transformer/EndComponentEliminatorTest.cpp b/test/functional/transformer/EndComponentEliminatorTest.cpp index 8785df336..2210eafc8 100644 --- a/test/functional/transformer/EndComponentEliminatorTest.cpp +++ b/test/functional/transformer/EndComponentEliminatorTest.cpp @@ -35,17 +35,19 @@ TEST(NeutralECRemover, SimpleModelTest) { ASSERT_NO_THROW(matrix = builder.build()); storm::storage::BitVector possibleEcRows(12, true); - consideredRows.set(3, false); - consideredRows.set(6, false); - consideredRows.set(7, false); - consideredRows.set(8, false); - consideredRows.set(11, false); + possibleEcRows.set(3, false); + possibleEcRows.set(6, false); + possibleEcRows.set(7, false); + possibleEcRows.set(8, false); + possibleEcRows.set(11, false); storm::storage::BitVector allowEmptyRows(5, true); allowEmptyRows.set(1, false); allowEmptyRows.set(4, false); + storm::storage::BitVector subsystem(5, true); + allowEmptyRows.set(2, false); - auto res = storm::transformer::EndComponentEliminator::transform(matrix, possibleEcRows, allowEmptyRows); + auto res = storm::transformer::EndComponentEliminator::transform(matrix, subsystem, possibleEcRows, allowEmptyRows); // Expected data storm::storage::SparseMatrixBuilder expectedBuilder(8, 3, 8, true, true, 3);