Browse Source

commiting some more helper stuff

main
sp 7 months ago
parent
commit
985aedcaa9
  1. BIN
      all_positions.pickle
  2. 156
      manual_control.py
  3. 8
      test.py
  4. 14
      train.py

BIN
all_positions.pickle

156
manual_control.py

@ -0,0 +1,156 @@
import sys
import operator
from os import listdir, system
from random import randrange
from ale_py import ALEInterface, SDL_SUPPORT, Action
from colors import *
from PIL import Image
from matplotlib import pyplot as plt
import cv2
import pickle
import queue
from dataclasses import dataclass, field
from enum import Enum
from copy import deepcopy
import numpy as np
import readchar
from sample_factory.algo.utils.tensor_dict import TensorDict
from query_sample_factory_checkpoint import SampleFactoryNNQueryWrapper
import time
tempest_binary = "/home/spranger/projects/tempest-devel/ranking_release/bin/storm"
rom_file = "/home/spranger/research/Skiing/env/lib/python3.8/site-packages/AutoROM/roms/skiing.bin"
def input_to_action(char):
if char == "0":
return Action.NOOP
if char == "1":
return Action.RIGHT
if char == "2":
return Action.LEFT
if char == "3":
return "reset"
if char == "4":
return "set_x"
if char == "5":
return "set_vel"
if char in ["w", "a", "s", "d"]:
return char
ale = ALEInterface()
if SDL_SUPPORT:
ale.setBool("sound", True)
ale.setBool("display_screen", True)
# Load the ROM file
ale.loadROM(rom_file)
with open('all_positions_v2.pickle', 'rb') as handle:
ramDICT = pickle.load(handle)
y_ram_setting = 60
x = 70
oldram = deepcopy(ale.getRAM())
velocity_set = False
for episode in range(10):
total_reward = 0
j = 0
while not ale.game_over():
if not velocity_set: ale.setRAM(14,0)
j += 1
a = input_to_action(repr(readchar.readchar())[1])
#a = Action.NOOP
if a == "w":
y_ram_setting -= 1
if y_ram_setting <= 61:
y_ram_setting = 61
for i, r in enumerate(ramDICT[y_ram_setting]):
ale.setRAM(i,r)
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "s":
y_ram_setting += 1
if y_ram_setting >= 1950:
y_ram_setting = 1945
for i, r in enumerate(ramDICT[y_ram_setting]):
ale.setRAM(i,r)
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "a":
x -= 1
if x <= 0:
x = 0
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "d":
x += 1
if x >= 144:
x = 144
ale.setRAM(25,x)
ale.act(Action.NOOP)
elif a == "reset":
ram_pos = input("Ram Position:")
for i, r in enumerate(ramDICT[int(ram_pos)]):
ale.setRAM(i,r)
ale.act(Action.NOOP)
# Apply an action and get the resulting reward
elif a == "set_x":
x = int(input("X:"))
ale.setRAM(25, x)
ale.act(Action.NOOP)
elif a == "set_vel":
vel = input("Velocity:")
ale.setRAM(14, int(vel))
ale.act(Action.NOOP)
velocity_set = True
else:
reward = ale.act(a)
ram = ale.getRAM()
#if j % 2 == 0:
# y_pixel = int(j*1/2) + 55
# ramDICT[y_pixel] = ram
# print(f"saving to {y_pixel:04}")
# if y_pixel == 126 or y_pixel == 235:
# input("")
int_old_ram = list(map(int, oldram))
int_ram = list(map(int, ram))
difference = list()
for o, r in zip(int_old_ram, int_ram):
difference.append(r-o)
oldram = deepcopy(ram)
#print(f"player_x: {ram[25]},\tclock_m: {ram[104]},\tclock_s: {ram[105]},\tclock_ms: {ram[106]},\tscore: {ram[107]}")
print(f"player_x: {ram[25]},\tplayer_y: {y_ram_setting}")
#print(f"y_0: {ram[86]}, y_1: {ram[87]}, y_2: {ram[88]}, y_3: {ram[89]}, y_4: {ram[90]}, y_5: {ram[91]}, y_6: {ram[92]}, y_7: {ram[93]}, y_8: {ram[94]}")
#for i, r in enumerate(ram):
# print('{:03}:{:02x} '.format(i,r), end="")
# if i % 16 == 15: print("")
#print("")
#for i, r in enumerate(difference):
# string = '{:02}:{:03} '.format(i%100,r)
# if r != 0:
# print(color(string, fg='red'), end="")
# else:
# print(string, end="")
# if i % 16 == 15: print("")
print("Episode %d ended with score: %d" % (episode, total_reward))
input("")
with open('all_positions_v2.pickle', 'wb') as handle:
pickle.dump(ramDICT, handle, protocol=pickle.HIGHEST_PROTOCOL)
ale.reset_game()

8
test.py

@ -6,9 +6,6 @@ import numpy as np
from matplotlib import pyplot as plt
import readchar
import queue
ski_position_queue = queue.Queue()
env = gym.make("ALE/Skiing-v5", render_mode="human")
@ -70,9 +67,4 @@ for _ in range(1000000):
observation, reward, terminated, truncated, info = env.step(0)
observation, reward, terminated, truncated, info = env.step(0)
#plt.imshow(observation)
#plt.show()
#im = Image.fromarray(observation)
#im.save("init.png")
env.close()

14
train.py

@ -0,0 +1,14 @@
from stable_baselines3 import PPO, DQN
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.logger import configure, Image
from stable_baselines3.common.callbacks import BaseCallback, EvalCallback, CheckpointCallback
from gym_minigrid.wrappers import RGBImgObsWrapper, ImgObsWrapper, MiniWrapper
import os
from subprocess import call
import time
import argparse
import gym
env = gym.make("ALE/Skiing-v5", render_mode="human")
observation, info = env.reset()
Loading…
Cancel
Save