You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

330 lines
22 KiB

#include "model.h"
#include "state.h"
#include "storm/models/ModelBase.h"
#include "storm/models/sparse/Model.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/Pomdp.h"
#include "storm/models/sparse/Ctmc.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/models/symbolic/Model.h"
#include "storm/models/symbolic/Dtmc.h"
#include "storm/models/symbolic/Mdp.h"
#include "storm/models/symbolic/Ctmc.h"
#include "storm/models/symbolic/MarkovAutomaton.h"
#include "storm/models/symbolic/StandardRewardModel.h"
#include <functional>
#include <string>
#include <sstream>
// Typedefs
using RationalFunction = storm::RationalFunction;
using ModelBase = storm::models::ModelBase;
template<typename ValueType> using SparseModel = storm::models::sparse::Model<ValueType>;
template<typename ValueType> using SparseDtmc = storm::models::sparse::Dtmc<ValueType>;
template<typename ValueType> using SparseMdp = storm::models::sparse::Mdp<ValueType>;
template<typename ValueType> using SparsePomdp = storm::models::sparse::Pomdp<ValueType>;
template<typename ValueType> using SparseCtmc = storm::models::sparse::Ctmc<ValueType>;
template<typename ValueType> using SparseMarkovAutomaton = storm::models::sparse::MarkovAutomaton<ValueType>;
template<typename ValueType> using SparseRewardModel = storm::models::sparse::StandardRewardModel<ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicModel = storm::models::symbolic::Model<DdType, ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicDtmc = storm::models::symbolic::Dtmc<DdType, ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicMdp = storm::models::symbolic::Mdp<DdType, ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicCtmc = storm::models::symbolic::Ctmc<DdType, ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicMarkovAutomaton = storm::models::symbolic::MarkovAutomaton<DdType, ValueType>;
template<storm::dd::DdType DdType, typename ValueType> using SymbolicRewardModel = storm::models::symbolic::StandardRewardModel<DdType, ValueType>;
// Thin wrappers
template<typename ValueType>
std::vector<storm::storage::sparse::state_type> getSparseInitialStates(SparseModel<ValueType> const& model) {
std::vector<storm::storage::sparse::state_type> initialStates;
for (auto entry : model.getInitialStates()) {
initialStates.push_back(entry);
}
return initialStates;
}
template<typename ValueType>
storm::storage::SparseMatrix<ValueType>& getTransitionMatrix(SparseModel<ValueType>& model) {
return model.getTransitionMatrix();
}
// requires pycarl.Variable
std::set<storm::RationalFunctionVariable> probabilityVariables(SparseModel<RationalFunction> const& model) {
return storm::models::sparse::getProbabilityParameters(model);
}
std::set<storm::RationalFunctionVariable> rewardVariables(SparseModel<RationalFunction> const& model) {
return storm::models::sparse::getRewardParameters(model);
}
template<typename ValueType>
std::function<std::string (storm::models::Model<ValueType> const&)> getModelInfoPrinter(std::string name = "Model") {
// look, C++ has lambdas and stuff!
return [name](storm::models::Model<ValueType> const& model) {
std::stringstream ss;
model.printModelInformationToStream(ss);
// attempting a slightly readable output
std::string text = name + " (";
std::string line;
for (int i = 0; std::getline(ss, line); i++) {
if (line != "-------------------------------------------------------------- ")
text += line + " ";
}
return text + ")";
};
}
template<typename ValueType>
storm::models::sparse::StateLabeling& getLabeling(SparseModel<ValueType>& model) {
return model.getStateLabeling();
}
// Bindings for general models
void define_model(py::module& m) {
// ModelType
py::enum_<storm::models::ModelType>(m, "ModelType", "Type of the model")
.value("DTMC", storm::models::ModelType::Dtmc)
.value("MDP", storm::models::ModelType::Mdp)
.value("POMDP", storm::models::ModelType::Pomdp)
.value("CTMC", storm::models::ModelType::Ctmc)
.value("MA", storm::models::ModelType::MarkovAutomaton)
;
// ModelBase
py::class_<ModelBase, std::shared_ptr<ModelBase>> modelBase(m, "_ModelBase", "Base class for all models");
modelBase.def_property_readonly("nr_states", &ModelBase::getNumberOfStates, "Number of states")
.def_property_readonly("nr_transitions", &ModelBase::getNumberOfTransitions, "Number of transitions")
.def_property_readonly("model_type", &ModelBase::getType, "Model type")
.def_property_readonly("supports_parameters", &ModelBase::supportsParameters, "Flag whether model supports parameters")
.def_property_readonly("has_parameters", &ModelBase::hasParameters, "Flag whether model has parameters")
.def_property_readonly("is_exact", &ModelBase::isExact, "Flag whether model is exact")
.def("_as_sparse_dtmc", [](ModelBase &modelbase) {
return modelbase.as<SparseDtmc<double>>();
}, "Get model as sparse DTMC")
.def("_as_sparse_pdtmc", [](ModelBase &modelbase) {
return modelbase.as<SparseDtmc<RationalFunction>>();
}, "Get model as sparse pDTMC")
.def("_as_sparse_mdp", [](ModelBase &modelbase) {
return modelbase.as<SparseMdp<double>>();
}, "Get model as sparse MDP")
.def("_as_sparse_pmdp", [](ModelBase &modelbase) {
return modelbase.as<SparseMdp<RationalFunction>>();
}, "Get model as sparse pMDP")
.def("_as_sparse_pomdp", [](ModelBase &modelbase) {
return modelbase.as<SparsePomdp<double>>();
}, "Get model as sparse POMDP")
.def("_as_sparse_ctmc", [](ModelBase &modelbase) {
return modelbase.as<SparseCtmc<double>>();
}, "Get model as sparse CTMC")
.def("_as_sparse_pctmc", [](ModelBase &modelbase) {
return modelbase.as<SparseCtmc<RationalFunction>>();
}, "Get model as sparse pCTMC")
.def("_as_sparse_ma", [](ModelBase &modelbase) {
return modelbase.as<SparseMarkovAutomaton<double>>();
}, "Get model as sparse MA")
.def("_as_sparse_pma", [](ModelBase &modelbase) {
return modelbase.as<SparseMarkovAutomaton<RationalFunction>>();
}, "Get model as sparse pMA")
.def("_as_symbolic_dtmc", [](ModelBase &modelbase) {
return modelbase.as<SymbolicDtmc<storm::dd::DdType::Sylvan, double>>();
}, "Get model as symbolic DTMC")
.def("_as_symbolic_pdtmc", [](ModelBase &modelbase) {
return modelbase.as<SymbolicDtmc<storm::dd::DdType::Sylvan, RationalFunction>>();
}, "Get model as symbolic pDTMC")
.def("_as_symbolic_mdp", [](ModelBase &modelbase) {
return modelbase.as<SymbolicMdp<storm::dd::DdType::Sylvan, double>>();
}, "Get model as symbolic MDP")
.def("_as_symbolic_pmdp", [](ModelBase &modelbase) {
return modelbase.as<SymbolicMdp<storm::dd::DdType::Sylvan, RationalFunction>>();
}, "Get model as symbolic pMDP")
.def("_as_symbolic_ctmc", [](ModelBase &modelbase) {
return modelbase.as<SymbolicCtmc<storm::dd::DdType::Sylvan, double>>();
}, "Get model as symbolic CTMC")
.def("_as_symbolic_pctmc", [](ModelBase &modelbase) {
return modelbase.as<SymbolicCtmc<storm::dd::DdType::Sylvan, RationalFunction>>();
}, "Get model as symbolic pCTMC")
.def("_as_symbolic_ma", [](ModelBase &modelbase) {
return modelbase.as<SymbolicMarkovAutomaton<storm::dd::DdType::Sylvan, double>>();
}, "Get model as symbolic MA")
.def("_as_symbolic_pma", [](ModelBase &modelbase) {
return modelbase.as<SymbolicMarkovAutomaton<storm::dd::DdType::Sylvan, RationalFunction>>();
}, "Get model as symbolic pMA")
;
}
// Bindings for sparse models
void define_sparse_model(py::module& m) {
// Models with double numbers
py::class_<SparseModel<double>, std::shared_ptr<SparseModel<double>>, ModelBase> model(m, "_SparseModel", "A probabilistic model where transitions are represented by doubles and saved in a sparse matrix");
model.def_property_readonly("labeling", &getLabeling<double>, "Labels")
.def_property_readonly("choice_labeling", [](SparseModel<double> const& model) {return model.getChoiceLabeling();}, "get choice labelling")
.def("has_choice_origins", [](SparseModel<double> const& model) {return model.hasChoiceOrigins();}, "has choice origins?")
.def_property_readonly("choice_origins", [](SparseModel<double> const& model) {return model.getChoiceOrigins();})
.def("labels_state", &SparseModel<double>::getLabelsOfState, py::arg("state"), "Get labels of state")
.def_property_readonly("initial_states", &getSparseInitialStates<double>, "Initial states")
.def_property_readonly("states", [](SparseModel<double>& model) {
return SparseModelStates<double>(model);
}, "Get states")
.def_property_readonly("reward_models", [](SparseModel<double>& model) {return model.getRewardModels(); }, "Reward models")
.def_property_readonly("transition_matrix", &getTransitionMatrix<double>, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Transition matrix")
.def_property_readonly("backward_transition_matrix", &SparseModel<double>::getBackwardTransitions, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Backward transition matrix")
.def("reduce_to_state_based_rewards", &SparseModel<double>::reduceToStateBasedRewards)
.def("__str__", getModelInfoPrinter<double>())
;
py::class_<SparseDtmc<double>, std::shared_ptr<SparseDtmc<double>>>(m, "SparseDtmc", "DTMC in sparse representation", model)
.def("__str__", getModelInfoPrinter<double>("DTMC"))
;
py::class_<SparseMdp<double>, std::shared_ptr<SparseMdp<double>>>(m, "SparseMdp", "MDP in sparse representation", model)
.def("__str__", getModelInfoPrinter<double>("MDP"))
;
py::class_<SparsePomdp<double>, std::shared_ptr<SparsePomdp<double>>>(m, "SparsePomdp", "POMDP in sparse representation", model)
.def("__str__", getModelInfoPrinter<double>("POMDP"))
.def_property_readonly("observations", &SparsePomdp<double>::getObservations)
.def_property_readonly("nr_observations", &SparsePomdp<double>::getNrObservations)
;
py::class_<SparseCtmc<double>, std::shared_ptr<SparseCtmc<double>>>(m, "SparseCtmc", "CTMC in sparse representation", model)
.def("__str__", getModelInfoPrinter<double>("CTMC"))
;
py::class_<SparseMarkovAutomaton<double>, std::shared_ptr<SparseMarkovAutomaton<double>>>(m, "SparseMA", "MA in sparse representation", model)
.def("__str__", getModelInfoPrinter<double>("MA"))
;
py::class_<SparseRewardModel<double>>(m, "SparseRewardModel", "Reward structure for sparse models")
.def_property_readonly("has_state_rewards", &SparseRewardModel<double>::hasStateRewards)
.def_property_readonly("has_state_action_rewards", &SparseRewardModel<double>::hasStateActionRewards)
.def_property_readonly("has_transition_rewards", &SparseRewardModel<double>::hasTransitionRewards)
.def_property_readonly("transition_rewards", [](SparseRewardModel<double>& rewardModel) {return rewardModel.getTransitionRewardMatrix();})
.def_property_readonly("state_rewards", [](SparseRewardModel<double>& rewardModel) {return rewardModel.getStateRewardVector();})
.def("get_state_reward", [](SparseRewardModel<double>& rewardModel, uint64_t state) {return rewardModel.getStateReward(state);})
.def("get_state_action_reward", [](SparseRewardModel<double>& rewardModel, uint64_t action_index) {return rewardModel.getStateActionReward(action_index);})
.def_property_readonly("state_action_rewards", [](SparseRewardModel<double>& rewardModel) {return rewardModel.getStateActionRewardVector();})
.def("reduce_to_state_based_rewards", [](SparseRewardModel<double>& rewardModel, storm::storage::SparseMatrix<double> const& transitions, bool onlyStateRewards){return rewardModel.reduceToStateBasedRewards(transitions, onlyStateRewards);}, py::arg("transition_matrix"), py::arg("only_state_rewards"), "Reduce to state-based rewards")
;
// Parametric models
py::class_<SparseModel<RationalFunction>, std::shared_ptr<SparseModel<RationalFunction>>, ModelBase> modelRatFunc(m, "_SparseParametricModel", "A probabilistic model where transitions are represented by rational functions and saved in a sparse matrix");
modelRatFunc.def("collect_probability_parameters", &probabilityVariables, "Collect parameters")
.def("collect_reward_parameters", &rewardVariables, "Collect reward parameters")
.def_property_readonly("labeling", &getLabeling<RationalFunction>, "Labels")
.def("labels_state", &SparseModel<RationalFunction>::getLabelsOfState, py::arg("state"), "Get labels of state")
.def_property_readonly("initial_states", &getSparseInitialStates<RationalFunction>, "Initial states")
.def_property_readonly("states", [](SparseModel<RationalFunction>& model) {
return SparseModelStates<RationalFunction>(model);
}, "Get states")
.def_property_readonly("reward_models", [](SparseModel<RationalFunction> const& model) {return model.getRewardModels(); }, "Reward models")
.def_property_readonly("transition_matrix", &getTransitionMatrix<RationalFunction>, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Transition matrix")
.def_property_readonly("backward_transition_matrix", &SparseModel<RationalFunction>::getBackwardTransitions, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Backward transition matrix")
.def("reduce_to_state_based_rewards", &SparseModel<RationalFunction>::reduceToStateBasedRewards)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricModel"))
.def("to_dot", [](SparseModel<RationalFunction>& model) { std::stringstream ss; model.writeDotToStream(ss); return ss.str(); }, "Write dot to a string")
;
py::class_<SparseDtmc<RationalFunction>, std::shared_ptr<SparseDtmc<RationalFunction>>>(m, "SparseParametricDtmc", "pDTMC in sparse representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricDTMC"))
;
py::class_<SparseMdp<RationalFunction>, std::shared_ptr<SparseMdp<RationalFunction>>>(m, "SparseParametricMdp", "pMDP in sparse representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricMDP"))
;
py::class_<SparseCtmc<RationalFunction>, std::shared_ptr<SparseCtmc<RationalFunction>>>(m, "SparseParametricCtmc", "pCTMC in sparse representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricCTMC"))
;
py::class_<SparseMarkovAutomaton<RationalFunction>, std::shared_ptr<SparseMarkovAutomaton<RationalFunction>>>(m, "SparseParametricMA", "pMA in sparse representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricMA"))
;
py::class_<SparseRewardModel<RationalFunction>>(m, "SparseParametricRewardModel", "Reward structure for parametric sparse models")
.def_property_readonly("has_state_rewards", &SparseRewardModel<RationalFunction>::hasStateRewards)
.def_property_readonly("has_state_action_rewards", &SparseRewardModel<RationalFunction>::hasStateActionRewards)
.def_property_readonly("has_transition_rewards", &SparseRewardModel<RationalFunction>::hasTransitionRewards)
.def_property_readonly("transition_rewards", [](SparseRewardModel<RationalFunction>& rewardModel) {return rewardModel.getTransitionRewardMatrix();})
.def_property_readonly("state_rewards", [](SparseRewardModel<RationalFunction>& rewardModel) {return rewardModel.getStateRewardVector();})
.def("get_state_reward", [](SparseRewardModel<RationalFunction>& rewardModel, uint64_t state) {return rewardModel.getStateReward(state);})
.def("get_state_action_reward", [](SparseRewardModel<RationalFunction>& rewardModel, uint64_t action_index) {return rewardModel.getStateActionReward(action_index);})
.def_property_readonly("state_action_rewards", [](SparseRewardModel<RationalFunction>& rewardModel) {return rewardModel.getStateActionRewardVector();})
.def("reduce_to_state_based_rewards", [](SparseRewardModel<RationalFunction>& rewardModel, storm::storage::SparseMatrix<RationalFunction> const& transitions, bool onlyStateRewards){return rewardModel.reduceToStateBasedRewards(transitions, onlyStateRewards);}, py::arg("transition_matrix"), py::arg("only_state_rewards"), "Reduce to state-based rewards")
;
}
// Bindings for symbolic models
template<storm::dd::DdType DdType>
void define_symbolic_model(py::module& m, std::string vt_suffix) {
// Set class names
std::string prefixClassName = "Symbolic" + vt_suffix;
std::string prefixParametricClassName = "Symbolic" + vt_suffix + "Parametric";
// Models with double numbers
py::class_<SymbolicModel<DdType, double>, std::shared_ptr<SymbolicModel<DdType, double>>, ModelBase> model(m, ("_"+prefixClassName+"Model").c_str(), "A probabilistic model where transitions are represented by doubles and saved in a symbolic representation");
model.def_property_readonly("reward_models", [](SymbolicModel<DdType, double>& model) {return model.getRewardModels(); }, "Reward models")
.def("reduce_to_state_based_rewards", &SymbolicModel<DdType, double>::reduceToStateBasedRewards)
.def("__str__", getModelInfoPrinter<double>())
;
py::class_<SymbolicDtmc<DdType, double>, std::shared_ptr<SymbolicDtmc<DdType, double>>>(m, (prefixClassName+"Dtmc").c_str(), "DTMC in symbolic representation", model)
.def("__str__", getModelInfoPrinter<double>("DTMC"))
;
py::class_<SymbolicMdp<DdType, double>, std::shared_ptr<SymbolicMdp<DdType, double>>>(m, (prefixClassName+"Mdp").c_str(), "MDP in symbolic representation", model)
.def("__str__", getModelInfoPrinter<double>("MDP"))
;
py::class_<SymbolicCtmc<DdType, double>, std::shared_ptr<SymbolicCtmc<DdType, double>>>(m, (prefixClassName+"Ctmc").c_str(), "CTMC in symbolic representation", model)
.def("__str__", getModelInfoPrinter<double>("CTMC"))
;
py::class_<SymbolicMarkovAutomaton<DdType, double>, std::shared_ptr<SymbolicMarkovAutomaton<DdType, double>>>(m, (prefixClassName+"MA").c_str(), "MA in symbolic representation", model)
.def("__str__", getModelInfoPrinter<double>("MA"))
;
py::class_<SymbolicRewardModel<DdType, double>>(m, (prefixClassName+"RewardModel").c_str(), "Reward structure for symbolic models")
.def_property_readonly("has_state_rewards", &SymbolicRewardModel<DdType, double>::hasStateRewards)
.def_property_readonly("has_state_action_rewards", &SymbolicRewardModel<DdType, double>::hasStateActionRewards)
.def_property_readonly("has_transition_rewards", &SymbolicRewardModel<DdType, double>::hasTransitionRewards)
;
// Parametric models
py::class_<SymbolicModel<DdType, RationalFunction>, std::shared_ptr<SymbolicModel<DdType, RationalFunction>>, ModelBase> modelRatFunc(m, ("_"+prefixParametricClassName+"Model").c_str(), "A probabilistic model where transitions are represented by rational functions and saved in a symbolic representation");
modelRatFunc.def("collect_probability_parameters", &probabilityVariables, "Collect parameters")
.def("collect_reward_parameters", &rewardVariables, "Collect reward parameters")
.def_property_readonly("reward_models", [](SymbolicModel<DdType, RationalFunction> const& model) {return model.getRewardModels(); }, "Reward models")
.def("reduce_to_state_based_rewards", &SymbolicModel<DdType, RationalFunction>::reduceToStateBasedRewards)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricModel"))
;
py::class_<SymbolicDtmc<DdType, RationalFunction>, std::shared_ptr<SymbolicDtmc<DdType, RationalFunction>>>(m, (prefixParametricClassName+"Dtmc").c_str(), "pDTMC in symbolic representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricDTMC"))
;
py::class_<SymbolicMdp<DdType, RationalFunction>, std::shared_ptr<SymbolicMdp<DdType, RationalFunction>>>(m, (prefixParametricClassName+"Mdp").c_str(), "pMDP in symbolic representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricMDP"))
;
py::class_<SymbolicCtmc<DdType, RationalFunction>, std::shared_ptr<SymbolicCtmc<DdType, RationalFunction>>>(m, (prefixParametricClassName+"Ctmc").c_str(), "pCTMC in symbolic representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricCTMC"))
;
py::class_<SymbolicMarkovAutomaton<DdType, RationalFunction>, std::shared_ptr<SymbolicMarkovAutomaton<DdType, RationalFunction>>>(m, (prefixParametricClassName+"MA").c_str(), "pMA in symbolic representation", modelRatFunc)
.def("__str__", getModelInfoPrinter<RationalFunction>("ParametricMA"))
;
py::class_<SymbolicRewardModel<DdType, RationalFunction>>(m, (prefixParametricClassName+"RewardModel").c_str(), "Reward structure for parametric symbolic models")
.def_property_readonly("has_state_rewards", &SymbolicRewardModel<DdType, RationalFunction>::hasStateRewards)
.def_property_readonly("has_state_action_rewards", &SymbolicRewardModel<DdType, RationalFunction>::hasStateActionRewards)
.def_property_readonly("has_transition_rewards", &SymbolicRewardModel<DdType, RationalFunction>::hasTransitionRewards)
;
}
template void define_symbolic_model<storm::dd::DdType::Sylvan>(py::module& m, std::string vt_suffix);