#include "model.h" #include "state.h" #include "storm/models/ModelBase.h" #include "storm/models/sparse/Model.h" #include "storm/models/sparse/Dtmc.h" #include "storm/models/sparse/Mdp.h" #include "storm/models/sparse/Pomdp.h" #include "storm/models/sparse/Ctmc.h" #include "storm/models/sparse/MarkovAutomaton.h" #include "storm/models/sparse/StandardRewardModel.h" #include "storm/models/symbolic/Model.h" #include "storm/models/symbolic/Dtmc.h" #include "storm/models/symbolic/Mdp.h" #include "storm/models/symbolic/Ctmc.h" #include "storm/models/symbolic/MarkovAutomaton.h" #include "storm/models/symbolic/StandardRewardModel.h" #include #include #include // Typedefs using RationalFunction = storm::RationalFunction; using ModelBase = storm::models::ModelBase; template using SparseModel = storm::models::sparse::Model; template using SparseDtmc = storm::models::sparse::Dtmc; template using SparseMdp = storm::models::sparse::Mdp; template using SparsePomdp = storm::models::sparse::Pomdp; template using SparseCtmc = storm::models::sparse::Ctmc; template using SparseMarkovAutomaton = storm::models::sparse::MarkovAutomaton; template using SparseRewardModel = storm::models::sparse::StandardRewardModel; template using SymbolicModel = storm::models::symbolic::Model; template using SymbolicDtmc = storm::models::symbolic::Dtmc; template using SymbolicMdp = storm::models::symbolic::Mdp; template using SymbolicCtmc = storm::models::symbolic::Ctmc; template using SymbolicMarkovAutomaton = storm::models::symbolic::MarkovAutomaton; template using SymbolicRewardModel = storm::models::symbolic::StandardRewardModel; // Thin wrappers template std::vector getSparseInitialStates(SparseModel const& model) { std::vector initialStates; for (auto entry : model.getInitialStates()) { initialStates.push_back(entry); } return initialStates; } template storm::storage::SparseMatrix& getTransitionMatrix(SparseModel& model) { return model.getTransitionMatrix(); } // requires pycarl.Variable std::set probabilityVariables(SparseModel const& model) { return storm::models::sparse::getProbabilityParameters(model); } std::set rewardVariables(SparseModel const& model) { return storm::models::sparse::getRewardParameters(model); } template std::function const&)> getModelInfoPrinter(std::string name = "Model") { // look, C++ has lambdas and stuff! return [name](storm::models::Model const& model) { std::stringstream ss; model.printModelInformationToStream(ss); // attempting a slightly readable output std::string text = name + " ("; std::string line; for (int i = 0; std::getline(ss, line); i++) { if (line != "-------------------------------------------------------------- ") text += line + " "; } return text + ")"; }; } template storm::models::sparse::StateLabeling& getLabeling(SparseModel& model) { return model.getStateLabeling(); } // Bindings for general models void define_model(py::module& m) { // ModelType py::enum_(m, "ModelType", "Type of the model") .value("DTMC", storm::models::ModelType::Dtmc) .value("MDP", storm::models::ModelType::Mdp) .value("POMDP", storm::models::ModelType::Pomdp) .value("CTMC", storm::models::ModelType::Ctmc) .value("MA", storm::models::ModelType::MarkovAutomaton) ; // ModelBase py::class_> modelBase(m, "_ModelBase", "Base class for all models"); modelBase.def_property_readonly("nr_states", &ModelBase::getNumberOfStates, "Number of states") .def_property_readonly("nr_transitions", &ModelBase::getNumberOfTransitions, "Number of transitions") .def_property_readonly("model_type", &ModelBase::getType, "Model type") .def_property_readonly("supports_parameters", &ModelBase::supportsParameters, "Flag whether model supports parameters") .def_property_readonly("has_parameters", &ModelBase::hasParameters, "Flag whether model has parameters") .def_property_readonly("is_exact", &ModelBase::isExact, "Flag whether model is exact") .def("_as_sparse_dtmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse DTMC") .def("_as_sparse_pdtmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse pDTMC") .def("_as_sparse_mdp", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse MDP") .def("_as_sparse_pmdp", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse pMDP") .def("_as_sparse_pomdp", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse POMDP") .def("_as_sparse_ctmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse CTMC") .def("_as_sparse_pctmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse pCTMC") .def("_as_sparse_ma", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse MA") .def("_as_sparse_pma", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as sparse pMA") .def("_as_symbolic_dtmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic DTMC") .def("_as_symbolic_pdtmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic pDTMC") .def("_as_symbolic_mdp", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic MDP") .def("_as_symbolic_pmdp", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic pMDP") .def("_as_symbolic_ctmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic CTMC") .def("_as_symbolic_pctmc", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic pCTMC") .def("_as_symbolic_ma", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic MA") .def("_as_symbolic_pma", [](ModelBase &modelbase) { return modelbase.as>(); }, "Get model as symbolic pMA") ; } // Bindings for sparse models void define_sparse_model(py::module& m) { // Models with double numbers py::class_, std::shared_ptr>, ModelBase> model(m, "_SparseModel", "A probabilistic model where transitions are represented by doubles and saved in a sparse matrix"); model.def_property_readonly("labeling", &getLabeling, "Labels") .def_property_readonly("choice_labeling", [](SparseModel const& model) {return model.getChoiceLabeling();}, "get choice labelling") .def("has_choice_origins", [](SparseModel const& model) {return model.hasChoiceOrigins();}, "has choice origins?") .def_property_readonly("choice_origins", [](SparseModel const& model) {return model.getChoiceOrigins();}) .def("labels_state", &SparseModel::getLabelsOfState, py::arg("state"), "Get labels of state") .def_property_readonly("initial_states", &getSparseInitialStates, "Initial states") .def_property_readonly("states", [](SparseModel& model) { return SparseModelStates(model); }, "Get states") .def_property_readonly("reward_models", [](SparseModel& model) {return model.getRewardModels(); }, "Reward models") .def_property_readonly("transition_matrix", &getTransitionMatrix, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Transition matrix") .def_property_readonly("backward_transition_matrix", &SparseModel::getBackwardTransitions, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Backward transition matrix") .def("reduce_to_state_based_rewards", &SparseModel::reduceToStateBasedRewards) .def("__str__", getModelInfoPrinter()) ; py::class_, std::shared_ptr>>(m, "SparseDtmc", "DTMC in sparse representation", model) .def("__str__", getModelInfoPrinter("DTMC")) ; py::class_, std::shared_ptr>>(m, "SparseMdp", "MDP in sparse representation", model) .def("__str__", getModelInfoPrinter("MDP")) ; py::class_, std::shared_ptr>>(m, "SparsePomdp", "POMDP in sparse representation", model) .def("__str__", getModelInfoPrinter("POMDP")) .def_property_readonly("observations", &SparsePomdp::getObservations) .def_property_readonly("nr_observations", &SparsePomdp::getNrObservations) ; py::class_, std::shared_ptr>>(m, "SparseCtmc", "CTMC in sparse representation", model) .def("__str__", getModelInfoPrinter("CTMC")) ; py::class_, std::shared_ptr>>(m, "SparseMA", "MA in sparse representation", model) .def("__str__", getModelInfoPrinter("MA")) ; py::class_>(m, "SparseRewardModel", "Reward structure for sparse models") .def_property_readonly("has_state_rewards", &SparseRewardModel::hasStateRewards) .def_property_readonly("has_state_action_rewards", &SparseRewardModel::hasStateActionRewards) .def_property_readonly("has_transition_rewards", &SparseRewardModel::hasTransitionRewards) .def_property_readonly("transition_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getTransitionRewardMatrix();}) .def_property_readonly("state_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getStateRewardVector();}) .def("get_state_reward", [](SparseRewardModel& rewardModel, uint64_t state) {return rewardModel.getStateReward(state);}) .def("get_state_action_reward", [](SparseRewardModel& rewardModel, uint64_t action_index) {return rewardModel.getStateActionReward(action_index);}) .def_property_readonly("state_action_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getStateActionRewardVector();}) .def("reduce_to_state_based_rewards", [](SparseRewardModel& rewardModel, storm::storage::SparseMatrix const& transitions, bool onlyStateRewards){return rewardModel.reduceToStateBasedRewards(transitions, onlyStateRewards);}, py::arg("transition_matrix"), py::arg("only_state_rewards"), "Reduce to state-based rewards") ; // Parametric models py::class_, std::shared_ptr>, ModelBase> modelRatFunc(m, "_SparseParametricModel", "A probabilistic model where transitions are represented by rational functions and saved in a sparse matrix"); modelRatFunc.def("collect_probability_parameters", &probabilityVariables, "Collect parameters") .def("collect_reward_parameters", &rewardVariables, "Collect reward parameters") .def_property_readonly("labeling", &getLabeling, "Labels") .def("labels_state", &SparseModel::getLabelsOfState, py::arg("state"), "Get labels of state") .def_property_readonly("initial_states", &getSparseInitialStates, "Initial states") .def_property_readonly("states", [](SparseModel& model) { return SparseModelStates(model); }, "Get states") .def_property_readonly("reward_models", [](SparseModel const& model) {return model.getRewardModels(); }, "Reward models") .def_property_readonly("transition_matrix", &getTransitionMatrix, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Transition matrix") .def_property_readonly("backward_transition_matrix", &SparseModel::getBackwardTransitions, py::return_value_policy::reference, py::keep_alive<1, 0>(), "Backward transition matrix") .def("reduce_to_state_based_rewards", &SparseModel::reduceToStateBasedRewards) .def("__str__", getModelInfoPrinter("ParametricModel")) .def("to_dot", [](SparseModel& model) { std::stringstream ss; model.writeDotToStream(ss); return ss.str(); }, "Write dot to a string") ; py::class_, std::shared_ptr>>(m, "SparseParametricDtmc", "pDTMC in sparse representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricDTMC")) ; py::class_, std::shared_ptr>>(m, "SparseParametricMdp", "pMDP in sparse representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricMDP")) ; py::class_, std::shared_ptr>>(m, "SparseParametricCtmc", "pCTMC in sparse representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricCTMC")) ; py::class_, std::shared_ptr>>(m, "SparseParametricMA", "pMA in sparse representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricMA")) ; py::class_>(m, "SparseParametricRewardModel", "Reward structure for parametric sparse models") .def_property_readonly("has_state_rewards", &SparseRewardModel::hasStateRewards) .def_property_readonly("has_state_action_rewards", &SparseRewardModel::hasStateActionRewards) .def_property_readonly("has_transition_rewards", &SparseRewardModel::hasTransitionRewards) .def_property_readonly("transition_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getTransitionRewardMatrix();}) .def_property_readonly("state_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getStateRewardVector();}) .def("get_state_reward", [](SparseRewardModel& rewardModel, uint64_t state) {return rewardModel.getStateReward(state);}) .def("get_state_action_reward", [](SparseRewardModel& rewardModel, uint64_t action_index) {return rewardModel.getStateActionReward(action_index);}) .def_property_readonly("state_action_rewards", [](SparseRewardModel& rewardModel) {return rewardModel.getStateActionRewardVector();}) .def("reduce_to_state_based_rewards", [](SparseRewardModel& rewardModel, storm::storage::SparseMatrix const& transitions, bool onlyStateRewards){return rewardModel.reduceToStateBasedRewards(transitions, onlyStateRewards);}, py::arg("transition_matrix"), py::arg("only_state_rewards"), "Reduce to state-based rewards") ; } // Bindings for symbolic models template void define_symbolic_model(py::module& m, std::string vt_suffix) { // Set class names std::string prefixClassName = "Symbolic" + vt_suffix; std::string prefixParametricClassName = "Symbolic" + vt_suffix + "Parametric"; // Models with double numbers py::class_, std::shared_ptr>, ModelBase> model(m, ("_"+prefixClassName+"Model").c_str(), "A probabilistic model where transitions are represented by doubles and saved in a symbolic representation"); model.def_property_readonly("reward_models", [](SymbolicModel& model) {return model.getRewardModels(); }, "Reward models") .def("reduce_to_state_based_rewards", &SymbolicModel::reduceToStateBasedRewards) .def("__str__", getModelInfoPrinter()) ; py::class_, std::shared_ptr>>(m, (prefixClassName+"Dtmc").c_str(), "DTMC in symbolic representation", model) .def("__str__", getModelInfoPrinter("DTMC")) ; py::class_, std::shared_ptr>>(m, (prefixClassName+"Mdp").c_str(), "MDP in symbolic representation", model) .def("__str__", getModelInfoPrinter("MDP")) ; py::class_, std::shared_ptr>>(m, (prefixClassName+"Ctmc").c_str(), "CTMC in symbolic representation", model) .def("__str__", getModelInfoPrinter("CTMC")) ; py::class_, std::shared_ptr>>(m, (prefixClassName+"MA").c_str(), "MA in symbolic representation", model) .def("__str__", getModelInfoPrinter("MA")) ; py::class_>(m, (prefixClassName+"RewardModel").c_str(), "Reward structure for symbolic models") .def_property_readonly("has_state_rewards", &SymbolicRewardModel::hasStateRewards) .def_property_readonly("has_state_action_rewards", &SymbolicRewardModel::hasStateActionRewards) .def_property_readonly("has_transition_rewards", &SymbolicRewardModel::hasTransitionRewards) ; // Parametric models py::class_, std::shared_ptr>, ModelBase> modelRatFunc(m, ("_"+prefixParametricClassName+"Model").c_str(), "A probabilistic model where transitions are represented by rational functions and saved in a symbolic representation"); modelRatFunc.def("collect_probability_parameters", &probabilityVariables, "Collect parameters") .def("collect_reward_parameters", &rewardVariables, "Collect reward parameters") .def_property_readonly("reward_models", [](SymbolicModel const& model) {return model.getRewardModels(); }, "Reward models") .def("reduce_to_state_based_rewards", &SymbolicModel::reduceToStateBasedRewards) .def("__str__", getModelInfoPrinter("ParametricModel")) ; py::class_, std::shared_ptr>>(m, (prefixParametricClassName+"Dtmc").c_str(), "pDTMC in symbolic representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricDTMC")) ; py::class_, std::shared_ptr>>(m, (prefixParametricClassName+"Mdp").c_str(), "pMDP in symbolic representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricMDP")) ; py::class_, std::shared_ptr>>(m, (prefixParametricClassName+"Ctmc").c_str(), "pCTMC in symbolic representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricCTMC")) ; py::class_, std::shared_ptr>>(m, (prefixParametricClassName+"MA").c_str(), "pMA in symbolic representation", modelRatFunc) .def("__str__", getModelInfoPrinter("ParametricMA")) ; py::class_>(m, (prefixParametricClassName+"RewardModel").c_str(), "Reward structure for parametric symbolic models") .def_property_readonly("has_state_rewards", &SymbolicRewardModel::hasStateRewards) .def_property_readonly("has_state_action_rewards", &SymbolicRewardModel::hasStateActionRewards) .def_property_readonly("has_transition_rewards", &SymbolicRewardModel::hasTransitionRewards) ; } template void define_symbolic_model(py::module& m, std::string vt_suffix);