Browse Source

Parametric sparse matrix builder and tests

refactoring
hannah 5 years ago
committed by Matthias Volk
parent
commit
e5a15eac6e
  1. 44
      lib/stormpy/storage/__init__.py
  2. 33
      src/storage/matrix.cpp
  3. 151
      tests/storage/test_matrix_builder.py

44
lib/stormpy/storage/__init__.py

@ -8,22 +8,60 @@ def build_sparse_matrix(array, row_group_indices=[]):
Build a sparse matrix from numpy array.
:param numpy array: The array.
:param List[double] row_group_indices: List containing the starting row of each row group.
:param List[double] row_group_indices: List containing the starting row of each row group in ascending order.
:return: Sparse matrix.
"""
num_row = array.shape[0]
num_col = array.shape[1]
if 0 < len(row_group_indices):
len_group_indices = len(row_group_indices)
if len_group_indices > 0:
builder = storage.SparseMatrixBuilder(rows=num_row, columns=num_col, has_custom_row_grouping=True,
row_groups=len(row_group_indices))
else:
builder = storage.SparseMatrixBuilder(rows=num_row, columns=num_col)
row_group_index = 0
for r in range(num_row):
if r in row_group_indices:
# check whether to start a custom row group
if row_group_index < len_group_indices and r == row_group_indices[row_group_index]:
builder.new_row_group(r)
row_group_index += 1
# insert values of the current row
for c in range(num_col):
builder.add_next_value(r, c, array[r, c])
return builder.build()
def build_parametric_sparse_matrix(array, row_group_indices=[]):
"""
Build a sparse matrix from numpy array.
:param numpy array: The array.
:param List[double] row_group_indices: List containing the starting row of each row group in ascending order.
:return: Parametric sparse matrix.
"""
num_row = array.shape[0]
num_col = array.shape[1]
len_group_indices = len(row_group_indices)
if len_group_indices > 0:
builder = storage.ParametricSparseMatrixBuilder(rows=num_row, columns=num_col, has_custom_row_grouping=True,
row_groups=len(row_group_indices))
else:
builder = storage.ParametricSparseMatrixBuilder(rows=num_row, columns=num_col)
row_group_index = 0
for r in range(num_row):
# check whether to start a custom row group
if row_group_index < len_group_indices and r == row_group_indices[row_group_index]:
builder.new_row_group(r)
row_group_index += 1
# insert values of the current row
for c in range(num_col):
builder.add_next_value(r, c, array[r, c])
return builder.build()

33
src/storage/matrix.cpp

@ -65,7 +65,38 @@ void define_sparse_matrix(py::module& m) {
)dox", py::arg("replacements"), py::arg("offset"))
;
// todo py::class_<SparseMatrixBuilder<RationalFunction>>(m, "SparseMatrixBuilder", "Builder of parametric sparse matrix")
py::class_<SparseMatrixBuilder<RationalFunction>>(m, "ParametricSparseMatrixBuilder", "Builder of parametric sparse matrix")
.def(py::init<double , double , double , bool , bool , double>(), "rows"_a = 0, "columns"_a = 0, "entries"_a = 0, "force_dimensions"_a = true, "has_custom_row_grouping"_a = false, "row_groups"_a = 0)
.def("add_next_value", &SparseMatrixBuilder<RationalFunction>::addNextValue, R"dox(
Sets the matrix entry at the given row and column to the given value. After all entries have been added,
a call to finalize(false) is mandatory.
Note: this is a linear setter. That is, it must be called consecutively for each entry, row by row and
column by column. As multiple entries per column are admitted, consecutive calls to this method are
admitted to mention the same row-column-pair. If rows are skipped entirely, the corresponding rows are
treated as empty. If these constraints are not met, an exception is thrown.
:param double row: The row in which the matrix entry is to be set
:param double column: The column in which the matrix entry is to be set
:param RationalFunction const& value: The value that is to be set at the specified row and column
)dox", py::arg("row"), py::arg("column"), py::arg("value"))
.def("new_row_group", &SparseMatrixBuilder<RationalFunction>::newRowGroup, py::arg("starting_row"), "Start a new row group in the matrix")
.def("build", &SparseMatrixBuilder<RationalFunction>::build, py::arg("overridden_row_count") = 0, py::arg("overridden_column_count") = 0, py::arg("overridden-row_group_count") = 0, "Finalize the sparse matrix")
.def("get_last_row", &SparseMatrixBuilder<RationalFunction>::getLastRow, "Get the most recently used row")
.def("get_current_row_group_count", &SparseMatrixBuilder<RationalFunction>::getCurrentRowGroupCount, "Get the current row group count")
.def("get_last_column", &SparseMatrixBuilder<RationalFunction>::getLastColumn, "the most recently used column")
.def("replace_columns", &SparseMatrixBuilder<RationalFunction>::replaceColumns, R"dox(
Replaces all columns with id >= offset according to replacements.
Every state with id offset+i is replaced by the id in replacements[i]. Afterwards the columns are sorted.
:param std::vector<double> const& replacements: replacements Mapping indicating the replacements from offset+i -> value of i
:param double offset: Offset to add to each id in vector index.
)dox", py::arg("replacements"), py::arg("offset"))
;
// SparseMatrix
py::class_<SparseMatrix<double>>(m, "SparseMatrix", "Sparse matrix")

151
tests/storage/test_matrix_builder.py

@ -33,6 +33,44 @@ class TestMatrixBuilder:
for e in matrix_5x5:
assert (e.value() == 0.1 and e.column == 1) or e.value() == 0 or (e.value() > 20 and e.column > 1)
def test_parametric_matrix_builder(self):
builder = stormpy.ParametricSparseMatrixBuilder(force_dimensions=True)
matrix = builder.build()
assert matrix.nr_columns == 0
assert matrix.nr_rows == 0
assert matrix.nr_entries == 0
builder_5x5 = stormpy.ParametricSparseMatrixBuilder(5, 5, force_dimensions=False)
one_pol = stormpy.RationalRF(1)
one_pol = stormpy.FactorizedPolynomial(one_pol)
first_val = stormpy.FactorizedRationalFunction(one_pol)
two_pol = stormpy.RationalRF(2)
two_pol = stormpy.FactorizedPolynomial(two_pol)
sec_val = stormpy.FactorizedRationalFunction(two_pol)
builder_5x5.add_next_value(0, 0, first_val)
builder_5x5.add_next_value(0, 1, first_val)
builder_5x5.add_next_value(2, 2, sec_val)
builder_5x5.add_next_value(2, 3, sec_val)
assert builder_5x5.get_last_column() == 3
assert builder_5x5.get_last_row() == 2
builder_5x5.add_next_value(3, 2, sec_val)
builder_5x5.add_next_value(3, 4, sec_val)
builder_5x5.add_next_value(4, 3, sec_val)
matrix_5x5 = builder_5x5.build()
assert matrix_5x5.nr_columns == 5
assert matrix_5x5.nr_rows == 5
assert matrix_5x5.nr_entries == 7
for e in matrix_5x5:
assert (e.value() == first_val and e.column < 2) or (e.value() == sec_val and e.column > 1)
def test_matrix_replace_columns(self):
builder = stormpy.SparseMatrixBuilder(3, 4, force_dimensions=False)
@ -60,8 +98,41 @@ class TestMatrixBuilder:
assert (e.value() == 0 and e.column == 0) or (e.value() == 3 and e.column == 1) or (
e.value() == 2 and e.column == 2) or (e.value() == 1 and e.column == 3)
def test_matrix_builder_row_grouping(self):
def test_parametric_matrix_replace_columns(self):
builder = stormpy.ParametricSparseMatrixBuilder(3, 4, force_dimensions=False)
one_pol = stormpy.RationalRF(1)
one_pol = stormpy.FactorizedPolynomial(one_pol)
first_val = stormpy.FactorizedRationalFunction(one_pol, one_pol)
two_pol = stormpy.RationalRF(2)
two_pol = stormpy.FactorizedPolynomial(two_pol)
sec_val = stormpy.FactorizedRationalFunction(two_pol, two_pol)
third_val = stormpy.FactorizedRationalFunction(one_pol, two_pol)
builder.add_next_value(0, 1, first_val)
builder.add_next_value(0, 2, sec_val)
builder.add_next_value(0, 3, third_val)
builder.add_next_value(1, 1, first_val)
builder.add_next_value(1, 2, sec_val)
builder.add_next_value(1, 3, third_val)
builder.add_next_value(2, 1, first_val)
builder.add_next_value(2, 2, sec_val)
builder.add_next_value(2, 3, third_val)
# replace rows
builder.replace_columns([3, 2], 2)
matrix = builder.build()
assert matrix.nr_entries == 9
# Check if columns where replaced
for e in matrix:
assert (e.value() == first_val and e.column == 1) or (e.value() == third_val and e.column == 2) or (
e.value() == sec_val and e.column == 3)
def test_matrix_builder_row_grouping(self):
num_rows = 5
builder = stormpy.SparseMatrixBuilder(num_rows, 6, has_custom_row_grouping=True, row_groups=2)
@ -78,6 +149,23 @@ class TestMatrixBuilder:
assert matrix.get_row_group_start(1) == 4
assert matrix.get_row_group_end(1) == 5
def test_parametric_matrix_builder_row_grouping(self):
num_rows = 5
builder = stormpy.ParametricSparseMatrixBuilder(num_rows, 6, has_custom_row_grouping=True, row_groups=2)
builder.new_row_group(1)
assert builder.get_current_row_group_count() == 1
builder.new_row_group(4)
assert builder.get_current_row_group_count() == 2
matrix = builder.build()
assert matrix.get_row_group_start(0) == 1
assert matrix.get_row_group_end(0) == 4
assert matrix.get_row_group_start(1) == 4
assert matrix.get_row_group_end(1) == 5
def test_matrix_from_numpy(self):
array = np.array([[0, 2],
[3, 4],
@ -97,6 +185,33 @@ class TestMatrixBuilder:
for e in row:
assert (e.value() == array[r, e.column])
def test_parametric_matrix_from_numpy(self):
one_pol = stormpy.RationalRF(1)
one_pol = stormpy.FactorizedPolynomial(one_pol)
first_val = stormpy.FactorizedRationalFunction(one_pol, one_pol)
two_pol = stormpy.RationalRF(2)
two_pol = stormpy.FactorizedPolynomial(two_pol)
sec_val = stormpy.FactorizedRationalFunction(two_pol, two_pol)
third_val = stormpy.FactorizedRationalFunction(one_pol, two_pol)
array = np.array([[sec_val, first_val],
[first_val, sec_val],
[sec_val, sec_val],
[third_val, third_val]])
matrix = stormpy.build_parametric_sparse_matrix(array)
# Check matrix dimension
assert matrix.nr_rows == array.shape[0]
assert matrix.nr_columns == array.shape[1]
assert matrix.nr_entries == 8
# Check matrix values
for r in range(array.shape[1]):
row = matrix.get_row(r)
for e in row:
assert (e.value() == array[r, e.column])
def test_matrix_from_numpy_row_grouping(self):
array = np.array([[0, 2],
[3, 4],
@ -122,3 +237,37 @@ class TestMatrixBuilder:
assert matrix.get_row_group_start(1) == 3
assert matrix.get_row_group_end(1) == 4
def test_parametric_matrix_from_numpy_row_grouping(self):
one_pol = stormpy.RationalRF(1)
one_pol = stormpy.FactorizedPolynomial(one_pol)
first_val = stormpy.FactorizedRationalFunction(one_pol, one_pol)
two_pol = stormpy.RationalRF(2)
two_pol = stormpy.FactorizedPolynomial(two_pol)
sec_val = stormpy.FactorizedRationalFunction(two_pol, two_pol)
third_val = stormpy.FactorizedRationalFunction(one_pol, two_pol)
array = np.array([[sec_val, first_val],
[first_val, sec_val],
[sec_val, sec_val],
[third_val, third_val]])
matrix = stormpy.build_parametric_sparse_matrix(array, row_group_indices=[1, 3])
# Check matrix dimension
assert matrix.nr_rows == array.shape[0]
assert matrix.nr_columns == array.shape[1]
assert matrix.nr_entries == 8
# Check matrix values
for r in range(array.shape[1]):
row = matrix.get_row(r)
for e in row:
assert (e.value() == array[r, e.column])
# Check row groups
assert matrix.get_row_group_start(0) == 1
assert matrix.get_row_group_end(0) == 3
assert matrix.get_row_group_start(1) == 3
assert matrix.get_row_group_end(1) == 4
Loading…
Cancel
Save