|
@ -26,6 +26,8 @@ def example_parametric_models_01(): |
|
|
else: |
|
|
else: |
|
|
import pycarl.gmp.formula |
|
|
import pycarl.gmp.formula |
|
|
|
|
|
|
|
|
|
|
|
# Prevent curious side effects from earlier runs (for tests only) |
|
|
|
|
|
pycarl.clear_pools() |
|
|
### |
|
|
### |
|
|
# How to apply an unknown FSC to obtain a pMC from a POMDP |
|
|
# How to apply an unknown FSC to obtain a pMC from a POMDP |
|
|
path = stormpy.examples.files.prism_pomdp_maze |
|
|
path = stormpy.examples.files.prism_pomdp_maze |
|
@ -68,9 +70,6 @@ def example_parametric_models_01(): |
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
# apply the memory onto the POMDP to get the cartesian product |
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
pomdp = stormpy.pomdp.unfold_memory(pomdp, memory) |
|
|
# apply the unknown FSC to obtain a pmc from the POMDP |
|
|
# apply the unknown FSC to obtain a pmc from the POMDP |
|
|
if False: |
|
|
|
|
|
# Currently, this command is known to cause problems in combination with running some other tests. |
|
|
|
|
|
# While we are investigating, we do not run the code |
|
|
|
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
pmc = stormpy.pomdp.apply_unknown_fsc(pomdp, stormpy.pomdp.PomdpFscApplicationMode.simple_linear) |
|
|
|
|
|
|
|
|
export_pmc = False # Set to True to export the pMC as drn. |
|
|
export_pmc = False # Set to True to export the pMC as drn. |
|
|