427 lines
33 KiB

#include "src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.h"
#include <cmath>
#include "src/adapters/CarlAdapter.h"
#include "src/models/sparse/MarkovAutomaton.h"
#include "src/models/sparse/StandardRewardModel.h"
#include "src/transformer/EndComponentEliminator.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/exceptions/InvalidOperationException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <class SparseMaModelType>
SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::SparseMaMultiObjectiveWeightVectorChecker(PreprocessorData const& data) : SparseMultiObjectiveWeightVectorChecker<SparseMaModelType>(data) {
// Set the (discretized) state action rewards.
this->discreteActionRewards.resize(data.objectives.size());
for(auto objIndex : this->unboundedObjectives) {
typename SparseMaModelType::RewardModelType const& rewModel = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName);
STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected.");
this->discreteActionRewards[objIndex] = rewModel.hasStateActionRewards() ? rewModel.getStateActionRewardVector() : std::vector<ValueType>(this->data.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
if(rewModel.hasStateRewards()) {
// Note that state rewards are earned over time and thus play no role for probabilistic states
for(auto markovianState : this->data.getMarkovianStatesOfPreprocessedModel()) {
this->discreteActionRewards[objIndex][this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[markovianState]] += rewModel.getStateReward(markovianState) / this->data.preprocessedModel.getExitRate(markovianState);
}
}
}
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
// Split the preprocessed model into transitions from/to probabilistic/Markovian states.
SubModel MS = createSubModel(true, weightedRewardVector);
SubModel PS = createSubModel(false, weightedRewardVector);
// Apply digitization to Markovian transitions
ValueType digitizationConstant = getDigitizationConstant();
digitize(MS, digitizationConstant);
// Get for each occurring (digitized) timeBound the indices of the objectives with that bound.
TimeBoundMap lowerTimeBounds;
TimeBoundMap upperTimeBounds;
digitizeTimeBounds(lowerTimeBounds, upperTimeBounds, digitizationConstant);
// Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch
// The end components that stay in PS will be removed.
// Note that the end component elimination could be omitted if we forbid zeno behavior
std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolverData(PS);
// Store the optimal choices of PS as computed by the minMax solver.
std::vector<uint_fast64_t> optimalChoicesAtCurrentEpoch(PS.getNumberOfStates(), std::numeric_limits<uint_fast64_t>::max());
// create a linear equation solver for the model induced by the optimal choice vector.
// the solver will be updated whenever the optimal choice vector has changed.
LinEqSolverData linEq;
linEq.b.resize(PS.getNumberOfStates());
// Stores the objectives for which we need to compute values in the current time epoch.
storm::storage::BitVector consideredObjectives = this->unboundedObjectives;
auto lowerTimeBoundIt = lowerTimeBounds.begin();
auto upperTimeBoundIt = upperTimeBounds.begin();
uint_fast64_t currentEpoch = std::max(lowerTimeBounds.empty() ? 0 : lowerTimeBoundIt->first - 1, upperTimeBounds.empty() ? 0 : upperTimeBoundIt->first); // consider lowerBound - 1 since we are interested in the first epoch that passes the bound
while(true) {
// Update the objectives that are considered at the current time epoch as well as the (weighted) reward vectors.
updateDataToCurrentEpoch(MS, PS, *minMax, consideredObjectives, currentEpoch, weightVector, lowerTimeBoundIt, lowerTimeBounds, upperTimeBoundIt, upperTimeBounds);
// Compute the values that can be obtained at probabilistic states in the current time epoch
performPSStep(PS, MS, *minMax, linEq, optimalChoicesAtCurrentEpoch, consideredObjectives);
// Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass.
// Only perform such a step if there is time left.
if(currentEpoch>0) {
performMSStep(MS, PS, consideredObjectives);
if(currentEpoch % 1000 == 0) {
STORM_LOG_DEBUG(currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0]);
std::cout << std::endl << currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0] << std::endl;
}
--currentEpoch;
} else {
break;
}
}
// compose the results from MS and PS
storm::utility::vector::setVectorValues(this->weightedResult, MS.states, MS.weightedSolutionVector);
storm::utility::vector::setVectorValues(this->weightedResult, PS.states, PS.weightedSolutionVector);
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], MS.states, MS.objectiveSolutionVectors[objIndex]);
storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], PS.states, PS.objectiveSolutionVectors[objIndex]);
}
}
template <class SparseMaModelType>
typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::SubModel SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::createSubModel(bool createMS, std::vector<ValueType> const& weightedRewardVector) const {
SubModel result;
storm::storage::BitVector probabilisticStates = ~this->data.getMarkovianStatesOfPreprocessedModel();
result.states = createMS ? this->data.getMarkovianStatesOfPreprocessedModel() : probabilisticStates;
result.choices = this->data.preprocessedModel.getTransitionMatrix().getRowIndicesOfRowGroups(result.states);
STORM_LOG_ASSERT(!createMS || result.states.getNumberOfSetBits() == result.choices.getNumberOfSetBits(), "row groups for Markovian states should consist of exactly one row");
//We need to add diagonal entries for selfloops on Markovian states.
result.toMS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, this->data.getMarkovianStatesOfPreprocessedModel(), createMS);
result.toPS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, probabilisticStates, false);
STORM_LOG_ASSERT(result.getNumberOfStates() == result.states.getNumberOfSetBits() && result.getNumberOfStates() == result.toMS.getRowGroupCount() && result.getNumberOfStates() == result.toPS.getRowGroupCount(), "Invalid state count for subsystem");
STORM_LOG_ASSERT(result.getNumberOfChoices() == result.choices.getNumberOfSetBits() && result.getNumberOfChoices() == result.toMS.getRowCount() && result.getNumberOfChoices() == result.toPS.getRowCount(), "Invalid state count for subsystem");
result.weightedRewardVector.resize(result.getNumberOfChoices());
storm::utility::vector::selectVectorValues(result.weightedRewardVector, result.choices, weightedRewardVector);
result.objectiveRewardVectors.resize(this->data.objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
std::vector<ValueType>& objVector = result.objectiveRewardVectors[objIndex];
objVector = std::vector<ValueType>(result.weightedRewardVector.size(), storm::utility::zero<ValueType>());
if(this->unboundedObjectives.get(objIndex)) {
storm::utility::vector::selectVectorValues(objVector, result.choices, this->discreteActionRewards[objIndex]);
} else {
typename SparseMaModelType::RewardModelType const& rewModel = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName);
STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected.");
STORM_LOG_ASSERT(!rewModel.hasStateRewards(), "State rewards for bounded objectives for MAs are not expected (bounded rewards are not supported).");
if(rewModel.hasStateActionRewards()) {
storm::utility::vector::selectVectorValues(objVector, result.choices, rewModel.getStateActionRewardVector());
}
}
}
result.weightedSolutionVector.resize(result.getNumberOfStates());
storm::utility::vector::selectVectorValues(result.weightedSolutionVector, result.states, this->weightedResult);
result.objectiveSolutionVectors.resize(this->data.objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
result.objectiveSolutionVectors[objIndex].resize(result.weightedSolutionVector.size());
storm::utility::vector::selectVectorValues(result.objectiveSolutionVectors[objIndex], result.states, this->objectiveResults[objIndex]);
}
result.auxChoiceValues.resize(result.getNumberOfChoices());
return result;
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type>
VT SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::getDigitizationConstant() const {
STORM_LOG_DEBUG("Retrieving digitization constant");
// We need to find a delta such that for each pair of lower and upper bounds it holds that
// 1 - e^(-maxRate lowerbound) * (1 + maxRate delta) ^ (lowerbound / delta) + 1-e^(-maxRate upperbound) * (1 + maxRate delta) ^ (upperbound / delta) <= maximumLowerUpperBoundGap
// and lowerbound/delta , upperbound/delta are natural numbers.
// Initialize some data for fast and easy access
VT const maxRate = this->data.preprocessedModel.getMaximalExitRate();
std::vector<std::pair<VT, VT>> lowerUpperBounds;
std::vector<std::pair<VT, VT>> eToPowerOfMinusMaxRateTimesBound;
for(auto const& obj : this->data.objectives) {
if(obj.timeBounds) {
if(obj.timeBounds->which() == 0) {
lowerUpperBounds.emplace_back(storm::utility::zero<VT>(), storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(*obj.timeBounds)));
eToPowerOfMinusMaxRateTimesBound.emplace_back(storm::utility::one<VT>(), std::exp(-maxRate * lowerUpperBounds.back().second));
} else {
auto const& pair = boost::get<std::pair<double, double>>(*obj.timeBounds);
lowerUpperBounds.emplace_back(storm::utility::convertNumber<VT>(pair.first), storm::utility::convertNumber<VT>(pair.second));
eToPowerOfMinusMaxRateTimesBound.emplace_back(std::exp(-maxRate * lowerUpperBounds.back().first), std::exp(-maxRate * lowerUpperBounds.back().second));
}
}
}
VT smallestNonZeroBound = storm::utility::zero<VT>();
for (auto const& bounds : lowerUpperBounds) {
if(!storm::utility::isZero(bounds.first)) {
smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? bounds.first : std::min(smallestNonZeroBound, bounds.first);
} else if (!storm::utility::isZero(bounds.second)) {
smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? bounds.second : std::min(smallestNonZeroBound, bounds.second);
}
}
if(storm::utility::isZero(smallestNonZeroBound)) {
// All time bounds are zero which means that any delta>0 is valid.
// This includes the case where there are no time bounds
return storm::utility::one<VT>();
}
// We brute-force a delta, since a direct computation is apparently not easy.
// Also note that the number of times this loop runs is a lower bound for the number of minMaxSolver invocations.
// Hence, this brute-force approach will most likely not be a bottleneck.
uint_fast64_t smallestStepBound = 1;
VT delta = smallestNonZeroBound / smallestStepBound;
while(true) {
bool deltaValid = true;
for(auto const& bounds : lowerUpperBounds) {
if(bounds.first/delta != std::floor(bounds.first/delta) ||
bounds.second/delta != std::floor(bounds.second/delta)) {
deltaValid = false;
break;
}
}
if(deltaValid) {
for(uint_fast64_t i = 0; i<lowerUpperBounds.size(); ++i) {
VT precisionOfObj = storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[i].first * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, lowerUpperBounds[i].first / delta) );
precisionOfObj += storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[i].second * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, lowerUpperBounds[i].second / delta) );
if(precisionOfObj > this->maximumLowerUpperBoundGap) {
deltaValid = false;
break;
}
}
}
if(deltaValid) {
break;
}
++smallestStepBound;
STORM_LOG_ASSERT(delta>smallestNonZeroBound / smallestStepBound, "Digitization constant is expected to become smaller in every iteration");
delta = smallestNonZeroBound / smallestStepBound;
}
STORM_LOG_DEBUG("Found digitization constant: " << delta << ". At least " << smallestStepBound << " digitization steps will be necessarry");
return delta;
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
VT SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::getDigitizationConstant() const {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& MS, VT const& digitizationConstant) const {
std::vector<VT> rateVector(MS.getNumberOfChoices());
storm::utility::vector::selectVectorValues(rateVector, MS.states, this->data.preprocessedModel.getExitRates());
for(uint_fast64_t row = 0; row < rateVector.size(); ++row) {
VT const eToMinusRateTimesDelta = std::exp(-rateVector[row] * digitizationConstant);
for(auto& entry : MS.toMS.getRow(row)) {
entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue());
if(entry.getColumn() == row) {
entry.setValue(entry.getValue() + eToMinusRateTimesDelta);
}
}
for(auto& entry : MS.toPS.getRow(row)) {
entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue());
}
MS.weightedRewardVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta;
for(auto& objVector : MS.objectiveRewardVectors) {
objVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta;
}
}
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& subModel, VT const& digitizationConstant) const {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) {
VT const maxRate = this->data.preprocessedModel.getMaximalExitRate();
for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) {
auto const& obj = this->data.objectives[objIndex];
if(obj.timeBounds) {
boost::optional<VT> objLowerBound, objUpperBound;
if(obj.timeBounds->which() == 0) {
objUpperBound = storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(obj.timeBounds.get()));
} else {
auto const& pair = boost::get<std::pair<double, double>>(obj.timeBounds.get());
if(!storm::utility::isZero(pair.first)) {
objLowerBound = storm::utility::convertNumber<VT>(pair.first);
}
objUpperBound = storm::utility::convertNumber<VT>(pair.second);
}
if(objLowerBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objLowerBound)/digitizationConstant);
auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objLowerBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToLowerBound[objIndex] = -digitizationError;
} else {
this->offsetsToLowerBound[objIndex] = storm::utility::zero<VT>();
}
if(objUpperBound) {
uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objUpperBound)/digitizationConstant);
auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first;
timeBoundIt->second.set(objIndex);
VT digitizationError = storm::utility::one<VT>();
digitizationError -= std::exp(-maxRate * (*objUpperBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound);
this->offsetsToUpperBound[objIndex] = digitizationError;
} else {
this->offsetsToUpperBound[objIndex] = storm::utility::zero<VT>();
}
STORM_LOG_ASSERT(this->offsetsToUpperBound[objIndex] - this->offsetsToLowerBound[objIndex] <= this->maximumLowerUpperBoundGap, "Precision not sufficient.");
}
}
}
template <class SparseMaModelType>
template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) {
STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type.");
}
template <class SparseMaModelType>
std::unique_ptr<typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::initMinMaxSolverData(SubModel const& PS) const {
std::unique_ptr<MinMaxSolverData> result(new MinMaxSolverData());
storm::storage::BitVector choicesStayingInPS(PS.getNumberOfChoices(), false);
for(uint_fast64_t choice = 0; choice < PS.toPS.getRowCount(); ++choice) {
if(storm::utility::isOne(PS.toPS.getRowSum(choice))) {
choicesStayingInPS.set(choice);
}
}
auto ecEliminatorResult = storm::transformer::EndComponentEliminator<ValueType>::transform(PS.toPS, choicesStayingInPS & storm::utility::vector::filterZero(PS.weightedRewardVector), storm::storage::BitVector(PS.getNumberOfStates(), true));
result->matrix = std::move(ecEliminatorResult.matrix);
result->toPSChoiceMapping = std::move(ecEliminatorResult.newToOldRowMapping);
result->fromPSStateMapping = std::move(ecEliminatorResult.oldToNewStateMapping);
result->b.resize(result->matrix.getRowCount());
result->x.resize(result->matrix.getRowGroupCount());
for(uint_fast64_t state=0; state < result->fromPSStateMapping.size(); ++state) {
if(result->fromPSStateMapping[state] < result->x.size()) {
result->x[result->fromPSStateMapping[state]] = PS.weightedSolutionVector[state];
}
}
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
result->solver = minMaxSolverFactory.create(result->matrix);
result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
result->solver->setTrackScheduler(true);
result->solver->allocateAuxMemory(storm::solver::MinMaxLinearEquationSolverOperation::SolveEquations);
return result;
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::updateDataToCurrentEpoch(SubModel& MS, SubModel& PS, MinMaxSolverData& minMax, storm::storage::BitVector& consideredObjectives, uint_fast64_t const& currentEpoch, std::vector<ValueType> const& weightVector, TimeBoundMap::iterator& lowerTimeBoundIt, TimeBoundMap const& lowerTimeBounds, TimeBoundMap::iterator& upperTimeBoundIt, TimeBoundMap const& upperTimeBounds) {
//For lower time bounds we need to react when the currentEpoch passed the bound
// Hence, we substract 1 from the lower time bounds.
if(lowerTimeBoundIt != lowerTimeBounds.end() && currentEpoch == lowerTimeBoundIt->first - 1) {
for(auto objIndex : lowerTimeBoundIt->second) {
// No more reward is earned for this objective.
storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], -weightVector[objIndex]);
storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], -weightVector[objIndex]);
MS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(MS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>());
PS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(PS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>());
}
++lowerTimeBoundIt;
}
if(upperTimeBoundIt != upperTimeBounds.end() && currentEpoch == upperTimeBoundIt->first) {
consideredObjectives |= upperTimeBoundIt->second;
for(auto objIndex : upperTimeBoundIt->second) {
// This objective now plays a role in the weighted sum
storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], weightVector[objIndex]);
storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], weightVector[objIndex]);
}
++upperTimeBoundIt;
}
// Update the solver data
PS.toMS.multiplyWithVector(MS.weightedSolutionVector, PS.auxChoiceValues);
storm::utility::vector::addVectors(PS.auxChoiceValues, PS.weightedRewardVector, PS.auxChoiceValues);
storm::utility::vector::selectVectorValues(minMax.b, minMax.toPSChoiceMapping, PS.auxChoiceValues);
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector<uint_fast64_t>& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const {
// compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector
std::vector<uint_fast64_t> newOptimalChoices(PS.getNumberOfStates());
minMax.solver->solveEquations(minMax.x, minMax.b);
this->transformReducedSolutionToOriginalModel(minMax.matrix, minMax.x, minMax.solver->getScheduler()->getChoices(), minMax.toPSChoiceMapping, minMax.fromPSStateMapping, PS.toPS, PS.weightedSolutionVector, newOptimalChoices);
// check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed
if(newOptimalChoices != optimalChoicesAtCurrentEpoch) {
std::cout << "X";
optimalChoicesAtCurrentEpoch.swap(newOptimalChoices);
linEq.solver = nullptr;
storm::storage::SparseMatrix<ValueType> linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true);
linEqMatrix.convertToEquationSystem();
linEq.solver = linEq.factory.create(std::move(linEqMatrix));
} else {
std::cout << " ";
}
for(auto objIndex : consideredObjectives) {
PS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], PS.auxChoiceValues);
storm::utility::vector::addVectors(PS.auxChoiceValues, PS.objectiveRewardVectors[objIndex], PS.auxChoiceValues);
storm::utility::vector::selectVectorValues(linEq.b, optimalChoicesAtCurrentEpoch, PS.toPS.getRowGroupIndices(), PS.auxChoiceValues);
linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b);
}
}
template <class SparseMaModelType>
void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const {
MS.toMS.multiplyWithVector(MS.weightedSolutionVector, MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.weightedRewardVector, MS.auxChoiceValues, MS.weightedSolutionVector);
MS.toPS.multiplyWithVector(PS.weightedSolutionVector, MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.weightedSolutionVector, MS.auxChoiceValues, MS.weightedSolutionVector);
for(auto objIndex : consideredObjectives) {
MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]);
MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues);
storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]);
}
}
template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>;
template double SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::getDigitizationConstant<double>() const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitize<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::SubModel& subModel, double const& digitizationConstant) const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitizeTimeBounds<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, double const& digitizationConstant);
#ifdef STORM_HAVE_CARL
template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>;
template storm::RationalNumber SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::getDigitizationConstant<storm::RationalNumber>() const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitize<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::SubModel& subModel, storm::RationalNumber const& digitizationConstant) const;
template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitizeTimeBounds<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, storm::RationalNumber const& digitizationConstant);
#endif
}
}
}