#include "src/modelchecker/multiobjective/helper/SparseMaMultiObjectiveWeightVectorChecker.h" #include <cmath> #include "src/adapters/CarlAdapter.h" #include "src/models/sparse/MarkovAutomaton.h" #include "src/models/sparse/StandardRewardModel.h" #include "src/transformer/EndComponentEliminator.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/exceptions/InvalidOperationException.h" namespace storm { namespace modelchecker { namespace helper { template <class SparseMaModelType> SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::SparseMaMultiObjectiveWeightVectorChecker(PreprocessorData const& data) : SparseMultiObjectiveWeightVectorChecker<SparseMaModelType>(data) { // Set the (discretized) state action rewards. this->discreteActionRewards.resize(data.objectives.size()); for(auto objIndex : this->unboundedObjectives) { typename SparseMaModelType::RewardModelType const& rewModel = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName); STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected."); this->discreteActionRewards[objIndex] = rewModel.hasStateActionRewards() ? rewModel.getStateActionRewardVector() : std::vector<ValueType>(this->data.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>()); if(rewModel.hasStateRewards()) { // Note that state rewards are earned over time and thus play no role for probabilistic states for(auto markovianState : this->data.getMarkovianStatesOfPreprocessedModel()) { this->discreteActionRewards[objIndex][this->data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[markovianState]] += rewModel.getStateReward(markovianState) / this->data.preprocessedModel.getExitRate(markovianState); } } } } template <class SparseMaModelType> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) { // Split the preprocessed model into transitions from/to probabilistic/Markovian states. SubModel MS = createSubModel(true, weightedRewardVector); SubModel PS = createSubModel(false, weightedRewardVector); // Apply digitization to Markovian transitions ValueType digitizationConstant = getDigitizationConstant(); digitize(MS, digitizationConstant); // Get for each occurring (digitized) timeBound the indices of the objectives with that bound. TimeBoundMap lowerTimeBounds; TimeBoundMap upperTimeBounds; digitizeTimeBounds(lowerTimeBounds, upperTimeBounds, digitizationConstant); // Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch // The end components that stay in PS will be removed. // Note that the end component elimination could be omitted if we forbid zeno behavior std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolverData(PS); // Store the optimal choices of PS as computed by the minMax solver. std::vector<uint_fast64_t> optimalChoicesAtCurrentEpoch(PS.getNumberOfStates(), std::numeric_limits<uint_fast64_t>::max()); // create a linear equation solver for the model induced by the optimal choice vector. // the solver will be updated whenever the optimal choice vector has changed. LinEqSolverData linEq; linEq.b.resize(PS.getNumberOfStates()); // Stores the objectives for which we need to compute values in the current time epoch. storm::storage::BitVector consideredObjectives = this->unboundedObjectives; auto lowerTimeBoundIt = lowerTimeBounds.begin(); auto upperTimeBoundIt = upperTimeBounds.begin(); uint_fast64_t currentEpoch = std::max(lowerTimeBounds.empty() ? 0 : lowerTimeBoundIt->first - 1, upperTimeBounds.empty() ? 0 : upperTimeBoundIt->first); // consider lowerBound - 1 since we are interested in the first epoch that passes the bound while(true) { // Update the objectives that are considered at the current time epoch as well as the (weighted) reward vectors. updateDataToCurrentEpoch(MS, PS, *minMax, consideredObjectives, currentEpoch, weightVector, lowerTimeBoundIt, lowerTimeBounds, upperTimeBoundIt, upperTimeBounds); // Compute the values that can be obtained at probabilistic states in the current time epoch performPSStep(PS, MS, *minMax, linEq, optimalChoicesAtCurrentEpoch, consideredObjectives); // Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass. // Only perform such a step if there is time left. if(currentEpoch>0) { performMSStep(MS, PS, consideredObjectives); if(currentEpoch % 1000 == 0) { STORM_LOG_DEBUG(currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0]); std::cout << std::endl << currentEpoch << " digitized time steps left. Current weighted value is " << PS.weightedSolutionVector[0] << std::endl; } --currentEpoch; } else { break; } } // compose the results from MS and PS storm::utility::vector::setVectorValues(this->weightedResult, MS.states, MS.weightedSolutionVector); storm::utility::vector::setVectorValues(this->weightedResult, PS.states, PS.weightedSolutionVector); for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) { storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], MS.states, MS.objectiveSolutionVectors[objIndex]); storm::utility::vector::setVectorValues(this->objectiveResults[objIndex], PS.states, PS.objectiveSolutionVectors[objIndex]); } } template <class SparseMaModelType> typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::SubModel SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::createSubModel(bool createMS, std::vector<ValueType> const& weightedRewardVector) const { SubModel result; storm::storage::BitVector probabilisticStates = ~this->data.getMarkovianStatesOfPreprocessedModel(); result.states = createMS ? this->data.getMarkovianStatesOfPreprocessedModel() : probabilisticStates; result.choices = this->data.preprocessedModel.getTransitionMatrix().getRowIndicesOfRowGroups(result.states); STORM_LOG_ASSERT(!createMS || result.states.getNumberOfSetBits() == result.choices.getNumberOfSetBits(), "row groups for Markovian states should consist of exactly one row"); //We need to add diagonal entries for selfloops on Markovian states. result.toMS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, this->data.getMarkovianStatesOfPreprocessedModel(), createMS); result.toPS = this->data.preprocessedModel.getTransitionMatrix().getSubmatrix(true, result.states, probabilisticStates, false); STORM_LOG_ASSERT(result.getNumberOfStates() == result.states.getNumberOfSetBits() && result.getNumberOfStates() == result.toMS.getRowGroupCount() && result.getNumberOfStates() == result.toPS.getRowGroupCount(), "Invalid state count for subsystem"); STORM_LOG_ASSERT(result.getNumberOfChoices() == result.choices.getNumberOfSetBits() && result.getNumberOfChoices() == result.toMS.getRowCount() && result.getNumberOfChoices() == result.toPS.getRowCount(), "Invalid state count for subsystem"); result.weightedRewardVector.resize(result.getNumberOfChoices()); storm::utility::vector::selectVectorValues(result.weightedRewardVector, result.choices, weightedRewardVector); result.objectiveRewardVectors.resize(this->data.objectives.size()); for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) { std::vector<ValueType>& objVector = result.objectiveRewardVectors[objIndex]; objVector = std::vector<ValueType>(result.weightedRewardVector.size(), storm::utility::zero<ValueType>()); if(this->unboundedObjectives.get(objIndex)) { storm::utility::vector::selectVectorValues(objVector, result.choices, this->discreteActionRewards[objIndex]); } else { typename SparseMaModelType::RewardModelType const& rewModel = this->data.preprocessedModel.getRewardModel(this->data.objectives[objIndex].rewardModelName); STORM_LOG_ASSERT(!rewModel.hasTransitionRewards(), "Preprocessed Reward model has transition rewards which is not expected."); STORM_LOG_ASSERT(!rewModel.hasStateRewards(), "State rewards for bounded objectives for MAs are not expected (bounded rewards are not supported)."); if(rewModel.hasStateActionRewards()) { storm::utility::vector::selectVectorValues(objVector, result.choices, rewModel.getStateActionRewardVector()); } } } result.weightedSolutionVector.resize(result.getNumberOfStates()); storm::utility::vector::selectVectorValues(result.weightedSolutionVector, result.states, this->weightedResult); result.objectiveSolutionVectors.resize(this->data.objectives.size()); for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) { result.objectiveSolutionVectors[objIndex].resize(result.weightedSolutionVector.size()); storm::utility::vector::selectVectorValues(result.objectiveSolutionVectors[objIndex], result.states, this->objectiveResults[objIndex]); } result.auxChoiceValues.resize(result.getNumberOfChoices()); return result; } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> VT SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::getDigitizationConstant() const { STORM_LOG_DEBUG("Retrieving digitization constant"); // We need to find a delta such that for each pair of lower and upper bounds it holds that // 1 - e^(-maxRate lowerbound) * (1 + maxRate delta) ^ (lowerbound / delta) + 1-e^(-maxRate upperbound) * (1 + maxRate delta) ^ (upperbound / delta) <= maximumLowerUpperBoundGap // and lowerbound/delta , upperbound/delta are natural numbers. // Initialize some data for fast and easy access VT const maxRate = this->data.preprocessedModel.getMaximalExitRate(); std::vector<std::pair<VT, VT>> lowerUpperBounds; std::vector<std::pair<VT, VT>> eToPowerOfMinusMaxRateTimesBound; for(auto const& obj : this->data.objectives) { if(obj.timeBounds) { if(obj.timeBounds->which() == 0) { lowerUpperBounds.emplace_back(storm::utility::zero<VT>(), storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(*obj.timeBounds))); eToPowerOfMinusMaxRateTimesBound.emplace_back(storm::utility::one<VT>(), std::exp(-maxRate * lowerUpperBounds.back().second)); } else { auto const& pair = boost::get<std::pair<double, double>>(*obj.timeBounds); lowerUpperBounds.emplace_back(storm::utility::convertNumber<VT>(pair.first), storm::utility::convertNumber<VT>(pair.second)); eToPowerOfMinusMaxRateTimesBound.emplace_back(std::exp(-maxRate * lowerUpperBounds.back().first), std::exp(-maxRate * lowerUpperBounds.back().second)); } } } VT smallestNonZeroBound = storm::utility::zero<VT>(); for (auto const& bounds : lowerUpperBounds) { if(!storm::utility::isZero(bounds.first)) { smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? bounds.first : std::min(smallestNonZeroBound, bounds.first); } else if (!storm::utility::isZero(bounds.second)) { smallestNonZeroBound = storm::utility::isZero(smallestNonZeroBound) ? bounds.second : std::min(smallestNonZeroBound, bounds.second); } } if(storm::utility::isZero(smallestNonZeroBound)) { // All time bounds are zero which means that any delta>0 is valid. // This includes the case where there are no time bounds return storm::utility::one<VT>(); } // We brute-force a delta, since a direct computation is apparently not easy. // Also note that the number of times this loop runs is a lower bound for the number of minMaxSolver invocations. // Hence, this brute-force approach will most likely not be a bottleneck. uint_fast64_t smallestStepBound = 1; VT delta = smallestNonZeroBound / smallestStepBound; while(true) { bool deltaValid = true; for(auto const& bounds : lowerUpperBounds) { if(bounds.first/delta != std::floor(bounds.first/delta) || bounds.second/delta != std::floor(bounds.second/delta)) { deltaValid = false; break; } } if(deltaValid) { for(uint_fast64_t i = 0; i<lowerUpperBounds.size(); ++i) { VT precisionOfObj = storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[i].first * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, lowerUpperBounds[i].first / delta) ); precisionOfObj += storm::utility::one<VT>() - (eToPowerOfMinusMaxRateTimesBound[i].second * storm::utility::pow(storm::utility::one<VT>() + maxRate * delta, lowerUpperBounds[i].second / delta) ); if(precisionOfObj > this->maximumLowerUpperBoundGap) { deltaValid = false; break; } } } if(deltaValid) { break; } ++smallestStepBound; STORM_LOG_ASSERT(delta>smallestNonZeroBound / smallestStepBound, "Digitization constant is expected to become smaller in every iteration"); delta = smallestNonZeroBound / smallestStepBound; } STORM_LOG_DEBUG("Found digitization constant: " << delta << ". At least " << smallestStepBound << " digitization steps will be necessarry"); return delta; } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> VT SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::getDigitizationConstant() const { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& MS, VT const& digitizationConstant) const { std::vector<VT> rateVector(MS.getNumberOfChoices()); storm::utility::vector::selectVectorValues(rateVector, MS.states, this->data.preprocessedModel.getExitRates()); for(uint_fast64_t row = 0; row < rateVector.size(); ++row) { VT const eToMinusRateTimesDelta = std::exp(-rateVector[row] * digitizationConstant); for(auto& entry : MS.toMS.getRow(row)) { entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue()); if(entry.getColumn() == row) { entry.setValue(entry.getValue() + eToMinusRateTimesDelta); } } for(auto& entry : MS.toPS.getRow(row)) { entry.setValue((storm::utility::one<VT>() - eToMinusRateTimesDelta) * entry.getValue()); } MS.weightedRewardVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta; for(auto& objVector : MS.objectiveRewardVectors) { objVector[row] *= storm::utility::one<VT>() - eToMinusRateTimesDelta; } } } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitize(SubModel& subModel, VT const& digitizationConstant) const { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> template <typename VT, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) { VT const maxRate = this->data.preprocessedModel.getMaximalExitRate(); for(uint_fast64_t objIndex = 0; objIndex < this->data.objectives.size(); ++objIndex) { auto const& obj = this->data.objectives[objIndex]; if(obj.timeBounds) { boost::optional<VT> objLowerBound, objUpperBound; if(obj.timeBounds->which() == 0) { objUpperBound = storm::utility::convertNumber<VT>(boost::get<uint_fast64_t>(obj.timeBounds.get())); } else { auto const& pair = boost::get<std::pair<double, double>>(obj.timeBounds.get()); if(!storm::utility::isZero(pair.first)) { objLowerBound = storm::utility::convertNumber<VT>(pair.first); } objUpperBound = storm::utility::convertNumber<VT>(pair.second); } if(objLowerBound) { uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objLowerBound)/digitizationConstant); auto timeBoundIt = lowerTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first; timeBoundIt->second.set(objIndex); VT digitizationError = storm::utility::one<VT>(); digitizationError -= std::exp(-maxRate * (*objLowerBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound); this->offsetsToLowerBound[objIndex] = -digitizationError; } else { this->offsetsToLowerBound[objIndex] = storm::utility::zero<VT>(); } if(objUpperBound) { uint_fast64_t digitizedBound = storm::utility::convertNumber<uint_fast64_t>((*objUpperBound)/digitizationConstant); auto timeBoundIt = upperTimeBounds.insert(std::make_pair(digitizedBound, storm::storage::BitVector(this->data.objectives.size(), false))).first; timeBoundIt->second.set(objIndex); VT digitizationError = storm::utility::one<VT>(); digitizationError -= std::exp(-maxRate * (*objUpperBound)) * storm::utility::pow(storm::utility::one<VT>() + maxRate * digitizationConstant, digitizedBound); this->offsetsToUpperBound[objIndex] = digitizationError; } else { this->offsetsToUpperBound[objIndex] = storm::utility::zero<VT>(); } STORM_LOG_ASSERT(this->offsetsToUpperBound[objIndex] - this->offsetsToLowerBound[objIndex] <= this->maximumLowerUpperBoundGap, "Precision not sufficient."); } } } template <class SparseMaModelType> template <typename VT, typename std::enable_if<!storm::NumberTraits<VT>::SupportsExponential, int>::type> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::digitizeTimeBounds(TimeBoundMap& lowerTimeBounds, TimeBoundMap& upperTimeBounds, VT const& digitizationConstant) { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded probabilities of MAs is unsupported for this value type."); } template <class SparseMaModelType> std::unique_ptr<typename SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::initMinMaxSolverData(SubModel const& PS) const { std::unique_ptr<MinMaxSolverData> result(new MinMaxSolverData()); storm::storage::BitVector choicesStayingInPS(PS.getNumberOfChoices(), false); for(uint_fast64_t choice = 0; choice < PS.toPS.getRowCount(); ++choice) { if(storm::utility::isOne(PS.toPS.getRowSum(choice))) { choicesStayingInPS.set(choice); } } auto ecEliminatorResult = storm::transformer::EndComponentEliminator<ValueType>::transform(PS.toPS, choicesStayingInPS & storm::utility::vector::filterZero(PS.weightedRewardVector), storm::storage::BitVector(PS.getNumberOfStates(), true)); result->matrix = std::move(ecEliminatorResult.matrix); result->toPSChoiceMapping = std::move(ecEliminatorResult.newToOldRowMapping); result->fromPSStateMapping = std::move(ecEliminatorResult.oldToNewStateMapping); result->b.resize(result->matrix.getRowCount()); result->x.resize(result->matrix.getRowGroupCount()); for(uint_fast64_t state=0; state < result->fromPSStateMapping.size(); ++state) { if(result->fromPSStateMapping[state] < result->x.size()) { result->x[result->fromPSStateMapping[state]] = PS.weightedSolutionVector[state]; } } storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory; result->solver = minMaxSolverFactory.create(result->matrix); result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); result->solver->setTrackScheduler(true); result->solver->allocateAuxMemory(storm::solver::MinMaxLinearEquationSolverOperation::SolveEquations); return result; } template <class SparseMaModelType> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::updateDataToCurrentEpoch(SubModel& MS, SubModel& PS, MinMaxSolverData& minMax, storm::storage::BitVector& consideredObjectives, uint_fast64_t const& currentEpoch, std::vector<ValueType> const& weightVector, TimeBoundMap::iterator& lowerTimeBoundIt, TimeBoundMap const& lowerTimeBounds, TimeBoundMap::iterator& upperTimeBoundIt, TimeBoundMap const& upperTimeBounds) { //For lower time bounds we need to react when the currentEpoch passed the bound // Hence, we substract 1 from the lower time bounds. if(lowerTimeBoundIt != lowerTimeBounds.end() && currentEpoch == lowerTimeBoundIt->first - 1) { for(auto objIndex : lowerTimeBoundIt->second) { // No more reward is earned for this objective. storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], -weightVector[objIndex]); storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], -weightVector[objIndex]); MS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(MS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>()); PS.objectiveRewardVectors[objIndex] = std::vector<ValueType>(PS.objectiveRewardVectors[objIndex].size(), storm::utility::zero<ValueType>()); } ++lowerTimeBoundIt; } if(upperTimeBoundIt != upperTimeBounds.end() && currentEpoch == upperTimeBoundIt->first) { consideredObjectives |= upperTimeBoundIt->second; for(auto objIndex : upperTimeBoundIt->second) { // This objective now plays a role in the weighted sum storm::utility::vector::addScaledVector(MS.weightedRewardVector, MS.objectiveRewardVectors[objIndex], weightVector[objIndex]); storm::utility::vector::addScaledVector(PS.weightedRewardVector, PS.objectiveRewardVectors[objIndex], weightVector[objIndex]); } ++upperTimeBoundIt; } // Update the solver data PS.toMS.multiplyWithVector(MS.weightedSolutionVector, PS.auxChoiceValues); storm::utility::vector::addVectors(PS.auxChoiceValues, PS.weightedRewardVector, PS.auxChoiceValues); storm::utility::vector::selectVectorValues(minMax.b, minMax.toPSChoiceMapping, PS.auxChoiceValues); } template <class SparseMaModelType> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector<uint_fast64_t>& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const { // compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector std::vector<uint_fast64_t> newOptimalChoices(PS.getNumberOfStates()); minMax.solver->solveEquations(minMax.x, minMax.b); this->transformReducedSolutionToOriginalModel(minMax.matrix, minMax.x, minMax.solver->getScheduler()->getChoices(), minMax.toPSChoiceMapping, minMax.fromPSStateMapping, PS.toPS, PS.weightedSolutionVector, newOptimalChoices); // check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed if(newOptimalChoices != optimalChoicesAtCurrentEpoch) { std::cout << "X"; optimalChoicesAtCurrentEpoch.swap(newOptimalChoices); linEq.solver = nullptr; storm::storage::SparseMatrix<ValueType> linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true); linEqMatrix.convertToEquationSystem(); linEq.solver = linEq.factory.create(std::move(linEqMatrix)); } else { std::cout << " "; } for(auto objIndex : consideredObjectives) { PS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], PS.auxChoiceValues); storm::utility::vector::addVectors(PS.auxChoiceValues, PS.objectiveRewardVectors[objIndex], PS.auxChoiceValues); storm::utility::vector::selectVectorValues(linEq.b, optimalChoicesAtCurrentEpoch, PS.toPS.getRowGroupIndices(), PS.auxChoiceValues); linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b); } } template <class SparseMaModelType> void SparseMaMultiObjectiveWeightVectorChecker<SparseMaModelType>::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const { MS.toMS.multiplyWithVector(MS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedRewardVector, MS.auxChoiceValues, MS.weightedSolutionVector); MS.toPS.multiplyWithVector(PS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedSolutionVector, MS.auxChoiceValues, MS.weightedSolutionVector); for(auto objIndex : consideredObjectives) { MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); } } template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>; template double SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::getDigitizationConstant<double>() const; template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitize<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::SubModel& subModel, double const& digitizationConstant) const; template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::digitizeTimeBounds<double>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, double const& digitizationConstant); #ifdef STORM_HAVE_CARL template class SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>; template storm::RationalNumber SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::getDigitizationConstant<storm::RationalNumber>() const; template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitize<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::SubModel& subModel, storm::RationalNumber const& digitizationConstant) const; template void SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>::digitizeTimeBounds<storm::RationalNumber>(SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& lowerTimeBounds, SparseMaMultiObjectiveWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>::TimeBoundMap& upperTimeBounds, storm::RationalNumber const& digitizationConstant); #endif } } }