You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

568 lines
16 KiB

#include <argp.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <getrss.h>
#include <sylvan.h>
#include <sylvan_table.h>
/* Configuration */
static int report_levels = 0; // report states at start of every level
static int report_table = 0; // report table size at end of every level
static int strategy = 1; // set to 1 = use PAR strategy; set to 0 = use BFS strategy
static int check_deadlocks = 0; // set to 1 to check for deadlocks
static int print_transition_matrix = 1; // print transition relation matrix
static int workers = 0; // autodetect
static char* model_filename = NULL; // filename of model
static char* out_filename = NULL; // filename of output BDD
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */
static struct argp_option options[] =
{
{"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0},
{"strategy", 's', "<bfs|par|sat>", 0, "Strategy for reachability (default=par)", 0},
#ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0},
#endif
{"deadlocks", 3, 0, 0, "Check for deadlocks", 1},
{"count-states", 1, 0, 0, "Report #states at each level", 1},
{"count-table", 2, 0, 0, "Report table usage at each level", 1},
{0, 0, 0, 0, 0, 0}
};
static error_t
parse_opt(int key, char *arg, struct argp_state *state)
{
switch (key) {
case 'w':
workers = atoi(arg);
break;
case 's':
if (strcmp(arg, "bfs")==0) strategy = 0;
else if (strcmp(arg, "par")==0) strategy = 1;
else if (strcmp(arg, "sat")==0) strategy = 2;
else argp_usage(state);
break;
case 3:
check_deadlocks = 1;
break;
case 1:
report_levels = 1;
break;
case 2:
report_table = 1;
break;
#ifdef HAVE_PROFILER
case 'p':
profile_filename = arg;
break;
#endif
case ARGP_KEY_ARG:
if (state->arg_num == 0) model_filename = arg;
if (state->arg_num == 1) out_filename = arg;
if (state->arg_num >= 2) argp_usage(state);
break;
case ARGP_KEY_END:
if (state->arg_num < 1) argp_usage(state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp argp = { options, parse_opt, "<model> [<output-bdd>]", 0, 0, 0, 0 };
/* Globals */
typedef struct set
{
MDD mdd;
MDD proj;
int size;
} *set_t;
typedef struct relation
{
MDD mdd;
MDD meta;
int size;
} *rel_t;
static size_t vector_size; // size of vector
static int next_count; // number of partitions of the transition relation
static rel_t *next; // each partition of the transition relation
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
/* Load a set from file */
static set_t
set_load(FILE* f)
{
lddmc_serialize_fromfile(f);
size_t mdd;
size_t proj;
int size;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&proj, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&size, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
LACE_ME;
set_t set = (set_t)malloc(sizeof(struct set));
set->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd));
set->proj = lddmc_ref(lddmc_serialize_get_reversed(proj));
set->size = size;
return set;
}
/* Save a set to file */
static void
set_save(FILE* f, set_t set)
{
size_t mdd = lddmc_serialize_add(set->mdd);
size_t proj = lddmc_serialize_add(set->proj);
lddmc_serialize_tofile(f);
fwrite(&mdd, sizeof(size_t), 1, f);
fwrite(&proj, sizeof(size_t), 1, f);
fwrite(&set->size, sizeof(int), 1, f);;
}
static void
rel_save(FILE* f, rel_t rel)
{
size_t mdd = lddmc_serialize_add(rel->mdd);
size_t meta = lddmc_serialize_add(rel->meta);
lddmc_serialize_tofile(f);
fwrite(&mdd, sizeof(size_t), 1, f);
fwrite(&meta, sizeof(size_t), 1, f);
}
static set_t
set_clone(set_t source)
{
set_t set = (set_t)malloc(sizeof(struct set));
set->mdd = lddmc_ref(source->mdd);
set->proj = lddmc_ref(source->proj);
set->size = source->size;
return set;
}
static int
calculate_size(MDD meta)
{
int result = 0;
uint32_t val = lddmc_getvalue(meta);
while (val != (uint32_t)-1) {
if (val != 0) result += 1;
meta = lddmc_follow(meta, val);
assert(meta != lddmc_true && meta != lddmc_false);
val = lddmc_getvalue(meta);
}
return result;
}
/* Load a relation from file */
static rel_t
rel_load(FILE* f)
{
lddmc_serialize_fromfile(f);
size_t mdd;
size_t meta;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
if (fread(&meta, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
LACE_ME;
rel_t rel = (rel_t)malloc(sizeof(struct relation));
rel->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd));
rel->meta = lddmc_ref(lddmc_serialize_get_reversed(meta));
rel->size = calculate_size(rel->meta);
return rel;
}
static void
print_example(MDD example)
{
if (example != lddmc_false) {
LACE_ME;
uint32_t vec[vector_size];
lddmc_sat_one(example, vec, vector_size);
size_t i;
printf("[");
for (i=0; i<vector_size; i++) {
if (i>0) printf(",");
printf("%" PRIu32, vec[i]);
}
printf("]");
}
}
static void
print_matrix(size_t size, MDD meta)
{
if (size == 0) return;
uint32_t val = lddmc_getvalue(meta);
if (val == 1) {
printf("+");
print_matrix(size-1, lddmc_follow(lddmc_follow(meta, 1), 2));
} else {
if (val == (uint32_t)-1) printf("-");
else if (val == 0) printf("-");
else if (val == 3) printf("r");
else if (val == 4) printf("w");
print_matrix(size-1, lddmc_follow(meta, val));
}
}
static char*
to_h(double size, char *buf)
{
const char* units[] = {"B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"};
int i = 0;
for (;size>1024;size/=1024) i++;
sprintf(buf, "%.*f %s", i, size, units[i]);
return buf;
}
static int
get_first(MDD meta)
{
uint32_t val = lddmc_getvalue(meta);
if (val != 0) return 0;
return 1+get_first(lddmc_follow(meta, val));
}
/* Straight-forward implementation of parallel reduction */
TASK_5(MDD, go_par, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks)
{
if (len == 1) {
// Calculate NEW successors (not in visited)
MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta));
if (deadlocks) {
// check which MDDs in deadlocks do not have a successor in this relation
MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur));
*deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc));
lddmc_deref(anc);
}
MDD result = lddmc_ref(lddmc_minus(succ, visited));
lddmc_deref(succ);
return result;
} else {
MDD deadlocks_left;
MDD deadlocks_right;
if (deadlocks) {
deadlocks_left = *deadlocks;
deadlocks_right = *deadlocks;
}
// Recursively calculate left+right
SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL);
MDD right = CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL);
MDD left = SYNC(go_par);
// Merge results of left+right
MDD result = lddmc_ref(lddmc_union(left, right));
lddmc_deref(left);
lddmc_deref(right);
if (deadlocks) {
*deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right));
lddmc_deref(deadlocks_left);
lddmc_deref(deadlocks_right);
}
return result;
}
}
/* PAR strategy, parallel strategy (operations called in parallel *and* parallelized by Sylvan) */
VOID_TASK_1(par, set_t, set)
{
MDD visited = set->mdd;
MDD new = lddmc_ref(visited);
size_t counter = 1;
do {
char buf[32];
to_h(getCurrentRSS(), buf);
printf("Memory usage: %s\n", buf);
printf("Level %zu... ", counter++);
if (report_levels) {
printf("%zu states... ", (size_t)lddmc_satcount_cached(visited));
}
fflush(stdout);
// calculate successors in parallel
MDD cur = new;
MDD deadlocks = cur;
new = CALL(go_par, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
lddmc_deref(cur);
if (check_deadlocks) {
printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks));
if (deadlocks != lddmc_false) {
printf("example: ");
print_example(deadlocks);
printf("... ");
check_deadlocks = 0;
}
}
// visited = visited + new
MDD old_visited = visited;
visited = lddmc_ref(lddmc_union(visited, new));
lddmc_deref(old_visited);
if (report_table) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled);
} else {
printf("done.\n");
}
} while (new != lddmc_false);
lddmc_deref(new);
set->mdd = visited;
}
/* Sequential version of merge-reduction */
TASK_5(MDD, go_bfs, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks)
{
if (len == 1) {
// Calculate NEW successors (not in visited)
MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta));
if (deadlocks) {
// check which MDDs in deadlocks do not have a successor in this relation
MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur));
*deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc));
lddmc_deref(anc);
}
MDD result = lddmc_ref(lddmc_minus(succ, visited));
lddmc_deref(succ);
return result;
} else {
MDD deadlocks_left;
MDD deadlocks_right;
if (deadlocks) {
deadlocks_left = *deadlocks;
deadlocks_right = *deadlocks;
}
// Recursively calculate left+right
MDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL);
MDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL);
// Merge results of left+right
MDD result = lddmc_ref(lddmc_union(left, right));
lddmc_deref(left);
lddmc_deref(right);
if (deadlocks) {
*deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right));
lddmc_deref(deadlocks_left);
lddmc_deref(deadlocks_right);
}
return result;
}
}
/* BFS strategy, sequential strategy (but operations are parallelized by Sylvan) */
VOID_TASK_1(bfs, set_t, set)
{
MDD visited = set->mdd;
MDD new = lddmc_ref(visited);
size_t counter = 1;
do {
char buf[32];
to_h(getCurrentRSS(), buf);
printf("Memory usage: %s\n", buf);
printf("Level %zu... ", counter++);
if (report_levels) {
printf("%zu states... ", (size_t)lddmc_satcount_cached(visited));
}
fflush(stdout);
MDD cur = new;
MDD deadlocks = cur;
new = CALL(go_bfs, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL);
lddmc_deref(cur);
if (check_deadlocks) {
printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks));
if (deadlocks != lddmc_false) {
printf("example: ");
print_example(deadlocks);
printf("... ");
check_deadlocks = 0;
}
}
// visited = visited + new
MDD old_visited = visited;
visited = lddmc_ref(lddmc_union(visited, new));
lddmc_deref(old_visited);
if (report_table) {
size_t filled, total;
sylvan_table_usage(&filled, &total);
printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled);
} else {
printf("done.\n");
}
} while (new != lddmc_false);
lddmc_deref(new);
set->mdd = visited;
}
/* Obtain current wallclock time */
static double
wctime()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec + 1E-6 * tv.tv_usec);
}
int
main(int argc, char **argv)
{
argp_parse(&argp, argc, argv, 0, 0, 0);
FILE *f = fopen(model_filename, "r");
if (f == NULL) {
fprintf(stderr, "Cannot open file '%s'!\n", model_filename);
return -1;
}
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
// Init Sylvan LDDmc
// Nodes table size: 24 bytes * 2**N_nodes
// Cache table size: 36 bytes * 2**N_cache
// With: N_nodes=25, N_cache=24: 1.3 GB memory
sylvan_set_sizes(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26);
sylvan_init_package();
sylvan_init_ldd();
sylvan_init_mtbdd();
// Read and report domain info (integers per vector and bits per integer)
if (fread(&vector_size, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
printf("Vector size: %zu\n", vector_size);
// Read initial state
printf("Loading initial state... ");
fflush(stdout);
set_t initial = set_load(f);
set_t states = set_clone(initial);
printf("done.\n");
// Read transitions
if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
next = (rel_t*)malloc(sizeof(rel_t) * next_count);
printf("Loading transition relations... ");
fflush(stdout);
int i;
for (i=0; i<next_count; i++) {
next[i] = rel_load(f);
printf("%d, ", i);
fflush(stdout);
}
fclose(f);
printf("done.\n");
// Report statistics
printf("Read file '%s'\n", argv[1]);
printf("%zu integers per state, %d transition groups\n", vector_size, next_count);
printf("MDD nodes:\n");
printf("Initial states: %zu MDD nodes\n", lddmc_nodecount(states->mdd));
for (i=0; i<next_count; i++) {
printf("Transition %d: %zu MDD nodes\n", i, lddmc_nodecount(next[i]->mdd));
}
if (print_transition_matrix) {
for (i=0; i<next_count; i++) {
print_matrix(vector_size, next[i]->meta);
printf(" (%d)\n", get_first(next[i]->meta));
}
}
LACE_ME;
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename);
#endif
if (strategy == 1) {
double t1 = wctime();
CALL(par, states);
double t2 = wctime();
printf("PAR Time: %f\n", t2-t1);
} else {
double t1 = wctime();
CALL(bfs, states);
double t2 = wctime();
printf("BFS Time: %f\n", t2-t1);
}
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop();
#endif
// Now we just have states
printf("Final states: %zu states\n", (size_t)lddmc_satcount_cached(states->mdd));
printf("Final states: %zu MDD nodes\n", lddmc_nodecount(states->mdd));
if (out_filename != NULL) {
printf("Writing to %s.\n", out_filename);
// Create LDD file
FILE *f = fopen(out_filename, "w");
lddmc_serialize_reset();
// Write domain...
fwrite(&vector_size, sizeof(size_t), 1, f);
// Write initial state...
set_save(f, initial);
// Write number of transitions
fwrite(&next_count, sizeof(int), 1, f);
// Write transitions
for (int i=0; i<next_count; i++) {
rel_save(f, next[i]);
}
// Write reachable states
int has_reachable = 1;
fwrite(&has_reachable, sizeof(int), 1, f);
set_save(f, states);
// Write action labels
fclose(f);
}
sylvan_stats_report(stdout);
return 0;
}