|
|
#include <argp.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#ifdef HAVE_PROFILER
#include <gperftools/profiler.h>
#endif
#include <getrss.h>
#include <sylvan.h>
#include <sylvan_table.h>
/* Configuration */ static int report_levels = 0; // report states at start of every level
static int report_table = 0; // report table size at end of every level
static int strategy = 1; // set to 1 = use PAR strategy; set to 0 = use BFS strategy
static int check_deadlocks = 0; // set to 1 to check for deadlocks
static int print_transition_matrix = 1; // print transition relation matrix
static int workers = 0; // autodetect
static char* model_filename = NULL; // filename of model
static char* out_filename = NULL; // filename of output BDD
#ifdef HAVE_PROFILER
static char* profile_filename = NULL; // filename for profiling
#endif
/* argp configuration */ static struct argp_option options[] = { {"workers", 'w', "<workers>", 0, "Number of workers (default=0: autodetect)", 0}, {"strategy", 's', "<bfs|par|sat>", 0, "Strategy for reachability (default=par)", 0}, #ifdef HAVE_PROFILER
{"profiler", 'p', "<filename>", 0, "Filename for profiling", 0}, #endif
{"deadlocks", 3, 0, 0, "Check for deadlocks", 1}, {"count-states", 1, 0, 0, "Report #states at each level", 1}, {"count-table", 2, 0, 0, "Report table usage at each level", 1}, {0, 0, 0, 0, 0, 0} };
static error_t parse_opt(int key, char *arg, struct argp_state *state) { switch (key) { case 'w': workers = atoi(arg); break; case 's': if (strcmp(arg, "bfs")==0) strategy = 0; else if (strcmp(arg, "par")==0) strategy = 1; else if (strcmp(arg, "sat")==0) strategy = 2; else argp_usage(state); break; case 3: check_deadlocks = 1; break; case 1: report_levels = 1; break; case 2: report_table = 1; break; #ifdef HAVE_PROFILER
case 'p': profile_filename = arg; break; #endif
case ARGP_KEY_ARG: if (state->arg_num == 0) model_filename = arg; if (state->arg_num == 1) out_filename = arg; if (state->arg_num >= 2) argp_usage(state); break; case ARGP_KEY_END: if (state->arg_num < 1) argp_usage(state); break; default: return ARGP_ERR_UNKNOWN; } return 0; }
static struct argp argp = { options, parse_opt, "<model> [<output-bdd>]", 0, 0, 0, 0 };
/* Globals */ typedef struct set { MDD mdd; MDD proj; int size; } *set_t;
typedef struct relation { MDD mdd; MDD meta; int size; } *rel_t;
static size_t vector_size; // size of vector
static int next_count; // number of partitions of the transition relation
static rel_t *next; // each partition of the transition relation
#define Abort(...) { fprintf(stderr, __VA_ARGS__); exit(-1); }
/* Load a set from file */ static set_t set_load(FILE* f) { lddmc_serialize_fromfile(f);
size_t mdd; size_t proj; int size;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&proj, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&size, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n");
LACE_ME;
set_t set = (set_t)malloc(sizeof(struct set)); set->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd)); set->proj = lddmc_ref(lddmc_serialize_get_reversed(proj)); set->size = size;
return set; }
/* Save a set to file */ static void set_save(FILE* f, set_t set) { size_t mdd = lddmc_serialize_add(set->mdd); size_t proj = lddmc_serialize_add(set->proj); lddmc_serialize_tofile(f); fwrite(&mdd, sizeof(size_t), 1, f); fwrite(&proj, sizeof(size_t), 1, f); fwrite(&set->size, sizeof(int), 1, f);; }
static void rel_save(FILE* f, rel_t rel) { size_t mdd = lddmc_serialize_add(rel->mdd); size_t meta = lddmc_serialize_add(rel->meta); lddmc_serialize_tofile(f); fwrite(&mdd, sizeof(size_t), 1, f); fwrite(&meta, sizeof(size_t), 1, f); }
static set_t set_clone(set_t source) { set_t set = (set_t)malloc(sizeof(struct set)); set->mdd = lddmc_ref(source->mdd); set->proj = lddmc_ref(source->proj); set->size = source->size; return set; }
static int calculate_size(MDD meta) { int result = 0; uint32_t val = lddmc_getvalue(meta); while (val != (uint32_t)-1) { if (val != 0) result += 1; meta = lddmc_follow(meta, val); assert(meta != lddmc_true && meta != lddmc_false); val = lddmc_getvalue(meta); } return result; }
/* Load a relation from file */ static rel_t rel_load(FILE* f) { lddmc_serialize_fromfile(f);
size_t mdd; size_t meta;
if (fread(&mdd, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n"); if (fread(&meta, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
LACE_ME;
rel_t rel = (rel_t)malloc(sizeof(struct relation)); rel->mdd = lddmc_ref(lddmc_serialize_get_reversed(mdd)); rel->meta = lddmc_ref(lddmc_serialize_get_reversed(meta)); rel->size = calculate_size(rel->meta);
return rel; }
static void print_example(MDD example) { if (example != lddmc_false) { LACE_ME; uint32_t vec[vector_size]; lddmc_sat_one(example, vec, vector_size);
size_t i; printf("["); for (i=0; i<vector_size; i++) { if (i>0) printf(","); printf("%" PRIu32, vec[i]); } printf("]"); } }
static void print_matrix(size_t size, MDD meta) { if (size == 0) return; uint32_t val = lddmc_getvalue(meta); if (val == 1) { printf("+"); print_matrix(size-1, lddmc_follow(lddmc_follow(meta, 1), 2)); } else { if (val == (uint32_t)-1) printf("-"); else if (val == 0) printf("-"); else if (val == 3) printf("r"); else if (val == 4) printf("w"); print_matrix(size-1, lddmc_follow(meta, val)); } }
static char* to_h(double size, char *buf) { const char* units[] = {"B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"}; int i = 0; for (;size>1024;size/=1024) i++; sprintf(buf, "%.*f %s", i, size, units[i]); return buf; }
static int get_first(MDD meta) { uint32_t val = lddmc_getvalue(meta); if (val != 0) return 0; return 1+get_first(lddmc_follow(meta, val)); }
/* Straight-forward implementation of parallel reduction */ TASK_5(MDD, go_par, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited)
MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta)); if (deadlocks) { // check which MDDs in deadlocks do not have a successor in this relation
MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur)); *deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc)); lddmc_deref(anc); } MDD result = lddmc_ref(lddmc_minus(succ, visited)); lddmc_deref(succ); return result; } else { MDD deadlocks_left; MDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; }
// Recursively calculate left+right
SPAWN(go_par, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left: NULL); MDD right = CALL(go_par, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL); MDD left = SYNC(go_par);
// Merge results of left+right
MDD result = lddmc_ref(lddmc_union(left, right)); lddmc_deref(left); lddmc_deref(right);
if (deadlocks) { *deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right)); lddmc_deref(deadlocks_left); lddmc_deref(deadlocks_right); }
return result; } }
/* PAR strategy, parallel strategy (operations called in parallel *and* parallelized by Sylvan) */ VOID_TASK_1(par, set_t, set) { MDD visited = set->mdd; MDD new = lddmc_ref(visited); size_t counter = 1; do { char buf[32]; to_h(getCurrentRSS(), buf); printf("Memory usage: %s\n", buf); printf("Level %zu... ", counter++); if (report_levels) { printf("%zu states... ", (size_t)lddmc_satcount_cached(visited)); } fflush(stdout);
// calculate successors in parallel
MDD cur = new; MDD deadlocks = cur; new = CALL(go_par, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); lddmc_deref(cur);
if (check_deadlocks) { printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks)); if (deadlocks != lddmc_false) { printf("example: "); print_example(deadlocks); printf("... "); check_deadlocks = 0; } }
// visited = visited + new
MDD old_visited = visited; visited = lddmc_ref(lddmc_union(visited, new)); lddmc_deref(old_visited);
if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled); } else { printf("done.\n"); } } while (new != lddmc_false); lddmc_deref(new); set->mdd = visited; }
/* Sequential version of merge-reduction */ TASK_5(MDD, go_bfs, MDD, cur, MDD, visited, size_t, from, size_t, len, MDD*, deadlocks) { if (len == 1) { // Calculate NEW successors (not in visited)
MDD succ = lddmc_ref(lddmc_relprod(cur, next[from]->mdd, next[from]->meta)); if (deadlocks) { // check which MDDs in deadlocks do not have a successor in this relation
MDD anc = lddmc_ref(lddmc_relprev(succ, next[from]->mdd, next[from]->meta, cur)); *deadlocks = lddmc_ref(lddmc_minus(*deadlocks, anc)); lddmc_deref(anc); } MDD result = lddmc_ref(lddmc_minus(succ, visited)); lddmc_deref(succ); return result; } else { MDD deadlocks_left; MDD deadlocks_right; if (deadlocks) { deadlocks_left = *deadlocks; deadlocks_right = *deadlocks; }
// Recursively calculate left+right
MDD left = CALL(go_bfs, cur, visited, from, (len+1)/2, deadlocks ? &deadlocks_left : NULL); MDD right = CALL(go_bfs, cur, visited, from+(len+1)/2, len/2, deadlocks ? &deadlocks_right : NULL);
// Merge results of left+right
MDD result = lddmc_ref(lddmc_union(left, right)); lddmc_deref(left); lddmc_deref(right);
if (deadlocks) { *deadlocks = lddmc_ref(lddmc_intersect(deadlocks_left, deadlocks_right)); lddmc_deref(deadlocks_left); lddmc_deref(deadlocks_right); }
return result; } }
/* BFS strategy, sequential strategy (but operations are parallelized by Sylvan) */ VOID_TASK_1(bfs, set_t, set) { MDD visited = set->mdd; MDD new = lddmc_ref(visited); size_t counter = 1; do { char buf[32]; to_h(getCurrentRSS(), buf); printf("Memory usage: %s\n", buf); printf("Level %zu... ", counter++); if (report_levels) { printf("%zu states... ", (size_t)lddmc_satcount_cached(visited)); } fflush(stdout);
MDD cur = new; MDD deadlocks = cur; new = CALL(go_bfs, cur, visited, 0, next_count, check_deadlocks ? &deadlocks : NULL); lddmc_deref(cur);
if (check_deadlocks) { printf("found %zu deadlock states... ", (size_t)lddmc_satcount_cached(deadlocks)); if (deadlocks != lddmc_false) { printf("example: "); print_example(deadlocks); printf("... "); check_deadlocks = 0; } }
// visited = visited + new
MDD old_visited = visited; visited = lddmc_ref(lddmc_union(visited, new)); lddmc_deref(old_visited);
if (report_table) { size_t filled, total; sylvan_table_usage(&filled, &total); printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled); } else { printf("done.\n"); } } while (new != lddmc_false); lddmc_deref(new); set->mdd = visited; }
/* Obtain current wallclock time */ static double wctime() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + 1E-6 * tv.tv_usec); }
int main(int argc, char **argv) { argp_parse(&argp, argc, argv, 0, 0, 0);
FILE *f = fopen(model_filename, "r"); if (f == NULL) { fprintf(stderr, "Cannot open file '%s'!\n", model_filename); return -1; }
// Init Lace
lace_init(workers, 1000000); // auto-detect number of workers, use a 1,000,000 size task queue
lace_startup(0, NULL, NULL); // auto-detect program stack, do not use a callback for startup
// Init Sylvan LDDmc
// Nodes table size: 24 bytes * 2**N_nodes
// Cache table size: 36 bytes * 2**N_cache
// With: N_nodes=25, N_cache=24: 1.3 GB memory
sylvan_set_sizes(1LL<<21, 1LL<<27, 1LL<<20, 1LL<<26); sylvan_init_package(); sylvan_init_ldd(); sylvan_init_mtbdd();
// Read and report domain info (integers per vector and bits per integer)
if (fread(&vector_size, sizeof(size_t), 1, f) != 1) Abort("Invalid input file!\n");
printf("Vector size: %zu\n", vector_size);
// Read initial state
printf("Loading initial state... "); fflush(stdout); set_t initial = set_load(f); set_t states = set_clone(initial); printf("done.\n");
// Read transitions
if (fread(&next_count, sizeof(int), 1, f) != 1) Abort("Invalid input file!\n"); next = (rel_t*)malloc(sizeof(rel_t) * next_count);
printf("Loading transition relations... "); fflush(stdout); int i; for (i=0; i<next_count; i++) { next[i] = rel_load(f); printf("%d, ", i); fflush(stdout); } fclose(f); printf("done.\n");
// Report statistics
printf("Read file '%s'\n", argv[1]); printf("%zu integers per state, %d transition groups\n", vector_size, next_count); printf("MDD nodes:\n"); printf("Initial states: %zu MDD nodes\n", lddmc_nodecount(states->mdd)); for (i=0; i<next_count; i++) { printf("Transition %d: %zu MDD nodes\n", i, lddmc_nodecount(next[i]->mdd)); }
if (print_transition_matrix) { for (i=0; i<next_count; i++) { print_matrix(vector_size, next[i]->meta); printf(" (%d)\n", get_first(next[i]->meta)); } }
LACE_ME;
#ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStart(profile_filename); #endif
if (strategy == 1) { double t1 = wctime(); CALL(par, states); double t2 = wctime(); printf("PAR Time: %f\n", t2-t1); } else { double t1 = wctime(); CALL(bfs, states); double t2 = wctime(); printf("BFS Time: %f\n", t2-t1); } #ifdef HAVE_PROFILER
if (profile_filename != NULL) ProfilerStop(); #endif
// Now we just have states
printf("Final states: %zu states\n", (size_t)lddmc_satcount_cached(states->mdd)); printf("Final states: %zu MDD nodes\n", lddmc_nodecount(states->mdd));
if (out_filename != NULL) { printf("Writing to %s.\n", out_filename);
// Create LDD file
FILE *f = fopen(out_filename, "w"); lddmc_serialize_reset();
// Write domain...
fwrite(&vector_size, sizeof(size_t), 1, f);
// Write initial state...
set_save(f, initial);
// Write number of transitions
fwrite(&next_count, sizeof(int), 1, f);
// Write transitions
for (int i=0; i<next_count; i++) { rel_save(f, next[i]); }
// Write reachable states
int has_reachable = 1; fwrite(&has_reachable, sizeof(int), 1, f); set_save(f, states);
// Write action labels
fclose(f); }
sylvan_stats_report(stdout);
return 0; }
|