308 lines
22 KiB

#include "SparseLTLSchedulerHelper.h"
#include "storm/storage/memorystructure/MemoryStructure.h"
#include "storm/storage/memorystructure/MemoryStructureBuilder.h"
#include "storm/transformer/DAProductBuilder.h"
#include "storm/utility/graph.h"
namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
template<typename ValueType, bool Nondeterministic>
SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper(uint_fast64_t numProductStates) : _randomScheduler(false), _producedChoices(), _infSets(), _accInfSets(numProductStates, boost::none) {
// Intentionally left empty.
}
template<typename ValueType, bool Nondeterministic>
uint_fast64_t SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::getMemoryState(uint_fast64_t daState, uint_fast64_t infSet) {
return (daState * (_infSets.size()+1))+ infSet;
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::setRandom() {
this->_randomScheduler = true;
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::saveProductEcChoices(automata::AcceptanceCondition const& acceptance, storm::storage::MaximalEndComponent const& mec, std::vector<automata::AcceptanceCondition::acceptance_expr::ptr> const& conjunction, typename transformer::DAProduct<productModelType>::ptr product) {
// Save all states contained in this MEC
storm::storage::BitVector mecStates(product->getProductModel().getNumberOfStates(), false);
for (auto const &stateChoicePair : mec) {
mecStates.set(stateChoicePair.first);
}
// We know the MEC satisfied the conjunction: Save InfSets.
std::set<uint_fast64_t> infSetIds;
for (auto const& literal : conjunction) {
storm::storage::BitVector infSet;
if (literal->isTRUE()) {
// All states
infSet = storm::storage::BitVector(product->getProductModel().getNumberOfStates(), true);
} else if (literal->isAtom()) {
const cpphoafparser::AtomAcceptance &atom = literal->getAtom();
if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) {
if (atom.isNegated()) {
infSet = ~acceptance.getAcceptanceSet(atom.getAcceptanceSet());
} else {
infSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet());
}
}
else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) {
// If there are FinSets in the conjunction we use the InfSet containing all states in this MEC
infSet = mecStates;
}
}
// Save new InfSets
if (infSet.size() > 0) {
auto it = std::find(_infSets.begin(), _infSets.end(), infSet);
if (it == _infSets.end()) {
infSetIds.insert(_infSets.size());
_infSets.emplace_back(infSet);
} else {
// save ID for accCond of the MEC states
infSetIds.insert(distance(_infSets.begin(), it));
}
}
}
// Save the InfSets into the _accInfSets for states in this MEC, but only if there weren't assigned to any other MEC yet.
storm::storage::BitVector newMecStates(product->getProductModel().getNumberOfStates(), false);
for (auto const &stateChoicePair : mec) {
if (_accInfSets[stateChoicePair.first] == boost::none) {
// state wasn't assigned to any other MEC yet.
_accInfSets[stateChoicePair.first].emplace(infSetIds);
newMecStates.set(stateChoicePair.first);
}
}
// Define scheduler choices for the states in this MEC (that are not in any other MEC)
for (uint_fast64_t id : infSetIds) {
// Scheduler that satisfies the MEC acceptance condition (visit each InfSet inf often, or switch to scheduler of another MEC)
storm::storage::Scheduler<ValueType> mecScheduler(product->getProductModel().getNumberOfStates());
// States not in InfSet: Compute a scheduler that, with prob=1, reaches the infSet via mecStates starting from states that are not yet in other MEC
storm::utility::graph::computeSchedulerProb1E<ValueType>(newMecStates, product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), mecStates, _infSets[id] & mecStates, mecScheduler);
// States that already reached the InfSet
for (auto pState : (newMecStates & _infSets[id])) {
// Prob1E sets an arbitrary choice for the psi states, but we want to stay in this accepting MEC.
mecScheduler.setChoice(*mec.getChoicesForState(pState).begin() - product->getProductModel().getTransitionMatrix().getRowGroupIndices()[pState], pState);
}
// Extract scheduler choices (only for states that are already assigned a scheduler, i.e are in another MEC)
for (auto pState : newMecStates) {
// We want to reach the InfSet, save choice: <s, q, InfSetID> ---> choice
this->_producedChoices.insert({std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), id), mecScheduler.getChoice(pState)});
}
}
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest, storm::storage::SparseMatrix<ValueType> const& transitionMatrix) {
// Compute size of the resulting memory structure: A state <q, infSet> is encoded as (q* (|infSets|+1))+ |infSet|
uint64 numMemoryStates = (numDaStates) * (_infSets.size()+1); //+1 for states outside accECs
_dontCareStates = std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false));
// Set choices for states or consider them "dontCare"
for (storm::storage::sparse::state_type automatonState= 0; automatonState < numDaStates; ++automatonState) {
for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) {
if (!product->isValidProductState(modelState, automatonState)) {
// If the state <s,q> does not occur in the product model, all the infSet combinations are irrelevant for the scheduler.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
_dontCareStates[getMemoryState(automatonState, infSet)].set(modelState, true);
}
} else {
auto pState = product->getProductStateIndex(modelState, automatonState);
if (acceptingProductStates.get(pState)) {
// For states in accepting ECs set the missing MEC-scheduler combinations are "dontCare", they are not reachable using the scheduler choices.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
if (_producedChoices.find(std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), infSet)) == _producedChoices.end() ) {
_dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
} else {
// Extract the choices of the REACH-scheduler (choices to reach an acc. MEC) for the MDP-DA product: <s,q> -> choice. The memory structure corresponds to the "last" copy of the DA (_infSets.get().size()).
this->_accInfSets[pState] = std::set<uint_fast64_t>({_infSets.size()});
if (reachScheduler->isDontCare(pState)) {
// Mark the maybe States of the untilProbability scheduler as "dontCare"
_dontCareStates[getMemoryState(product->getAutomatonState(pState), _infSets.size())].set(product->getModelState(pState), true);
} else {
// Set choice For non-accepting states that are not in any accepting EC
this->_producedChoices.insert({std::make_tuple(product->getModelState(pState),product->getAutomatonState(pState),_infSets.size()),reachScheduler->getChoice(pState)});
};
// All other InfSet combinations are unreachable (dontCare)
for (uint_fast64_t infSet = 0; infSet < _infSets.size(); ++infSet) {
_dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
}
}
}
// Prepare the memory structure. For that, we need: transitions, initialMemoryStates (and memoryStateLabeling)
// The next move function of the memory, will be build based on the transitions of the DA and jumps between InfSets.
_memoryTransitions = std::vector<std::vector<storm::storage::BitVector>>(numMemoryStates, std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false)));
for (storm::storage::sparse::state_type automatonFrom = 0; automatonFrom < numDaStates; ++automatonFrom) {
for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) {
uint_fast64_t automatonTo = productBuilder.getSuccessor(automatonFrom, modelState);
if (product->isValidProductState(modelState, automatonTo)) {
// Add the modelState to one outgoing transition of all states of the form <automatonFrom, InfSet> (Inf=lenInfSet equals not in MEC)
// For non-accepting states that are not in any accepting EC we use the 'last' copy of the DA
// and for the accepting states we jump through copies of the DA wrt. the infinity sets.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
// Check if we need to switch the acceptance condition
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
if (_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().count(infSet) == 0) {
// the state is is in a different accepting MEC with a different accepting conjunction of InfSets.
auto newInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin();
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *newInfSet)].set(modelState);
} else {
// Continue looking for any accepting EC (if we haven't reached one yet) or stay in the corresponding accepting EC, test whether we have reached the next infSet.
if (infSet == _infSets.size() || !(_infSets[infSet].get(product->getProductStateIndex(modelState, automatonTo)))) {
// <modelState, automatonTo> is not in any accepting EC or does not satisfy the InfSet, we stay there.
// Add modelState to the transition from <automatonFrom, InfSet> to <automatonTo, InfSet>
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, infSet)].set(modelState);
} else {
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
// <modelState, automatonTo> satisfies the InfSet, find the next one.
auto nextInfSet = std::find(_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin(), _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), infSet);
STORM_LOG_ASSERT(nextInfSet != _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> does not contain the infSet " << infSet);
nextInfSet++;
if (nextInfSet == _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end()) {
// Start again.
nextInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin();
}
// Add modelState to the transition from <automatonFrom <mec, InfSet>> to <automatonTo, <mec, NextInfSet>>.
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *nextInfSet)].set(modelState);
}
}
}
}
}
}
// Finished creation of transitions.
// Find initial memory states
this->_memoryInitialStates = std::vector<uint_fast64_t>(transitionMatrix.getRowGroupCount());
// Save for each relevant model state its initial memory state (get the s-successor q of q0)
for (storm::storage::sparse::state_type modelState : modelStatesOfInterest) {
storm::storage::sparse::state_type automatonState = productBuilder.getInitialState(modelState);
STORM_LOG_ASSERT(product->isValidProductState(modelState, automatonState), "The memory successor state for the model state "<< modelState << "does not exist in the DA-Model Product.");
if (acceptingProductStates[product->getProductStateIndex(modelState, automatonState)]) {
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonState)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonState<<"> is undefined.");
// If <s, q> is an accepting state start in the first InfSet of <s, q>.
auto infSet = _accInfSets[product->getProductStateIndex(modelState, automatonState)].get().begin();
_memoryInitialStates[modelState] = getMemoryState(automatonState, *infSet);
} else {
_memoryInitialStates[modelState] = getMemoryState(automatonState, _infSets.size());
}
}
}
template<typename ValueType, bool Nondeterministic>
storm::storage::Scheduler<ValueType> SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::extractScheduler(storm::models::sparse::Model<ValueType> const& model, bool onlyInitialStatesRelevant) {
if (_randomScheduler) {
storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates());
for (storm::storage::sparse::state_type state = 0; state < model.getNumberOfStates(); ++state) {
scheduler.setChoice(0, state);
}
return scheduler;
}
// Otherwise, we compute a scheduler with memory.
// Create a memory structure for the MDP scheduler with memory. If hasRelevantStates is set, we only consider initial model states relevant.
auto memoryBuilder = storm::storage::MemoryStructureBuilder<ValueType>(this->_memoryTransitions.size(), model, onlyInitialStatesRelevant);
// Build the transitions between the memory states: startState to goalState using modelStates (transitionVector).
for (storm::storage::sparse::state_type startState = 0; startState < this->_memoryTransitions.size(); ++startState) {
for (storm::storage::sparse::state_type goalState = 0; goalState < this->_memoryTransitions.size(); ++goalState) {
// Bitvector that represents modelStates the model states that trigger this transition.
memoryBuilder.setTransition(startState, goalState, this->_memoryTransitions[startState][goalState]);
}
}
// InitialMemoryStates: Assign an initial memory state model states
if (onlyInitialStatesRelevant) {
// Only consider initial model states
for (uint_fast64_t modelState : model.getInitialStates()) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]);
}
} else {
// All model states are relevant
for (uint_fast64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]);
}
}
// Build the memoryStructure.
storm::storage::MemoryStructure memoryStructure = memoryBuilder.build();
// Create a scheduler (with memory) for the model from the REACH and MEC scheduler of the MDP-DA-product model.
storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates(), memoryStructure);
// Use choices in the product model to create a choice based on model state and memory state
for (const auto &choice : this->_producedChoices) {
// <s, q, InfSet> -> choice
storm::storage::sparse::state_type modelState = std::get<0>(choice.first);
storm::storage::sparse::state_type daState = std::get<1>(choice.first);
uint_fast64_t infSet = std::get<2>(choice.first);
STORM_LOG_ASSERT(!this->_dontCareStates[getMemoryState(daState, infSet)].get(modelState), "Tried to set choice for dontCare state.");
scheduler.setChoice(choice.second, modelState, getMemoryState(daState, infSet));
}
// Set "dontCare" states
for (uint_fast64_t memoryState = 0; memoryState < this->_dontCareStates.size(); ++memoryState) {
for (auto state : this->_dontCareStates[memoryState]) {
scheduler.setDontCare(state, memoryState);
}
}
// Sanity check for created scheduler.
STORM_LOG_ASSERT(scheduler.isDeterministicScheduler(), "Expected a deterministic scheduler");
STORM_LOG_ASSERT(!scheduler.isPartialScheduler(), "Expected a fully defined scheduler");
return scheduler;
}
template class SparseLTLSchedulerHelper<double, false>;
template class SparseLTLSchedulerHelper<double, true>;
#ifdef STORM_HAVE_CARL
template class SparseLTLSchedulerHelper<storm::RationalNumber, false>;
template class SparseLTLSchedulerHelper<storm::RationalNumber, true>;
template class SparseLTLSchedulerHelper<storm::RationalFunction, false>;
#endif
}
}
}
}