#include "SparseLTLSchedulerHelper.h" #include "storm/storage/memorystructure/MemoryStructure.h" #include "storm/storage/memorystructure/MemoryStructureBuilder.h" #include "storm/transformer/DAProductBuilder.h" #include "storm/utility/graph.h" namespace storm { namespace modelchecker { namespace helper { namespace internal { template<typename ValueType, bool Nondeterministic> SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper(uint_fast64_t numProductStates) : _randomScheduler(false), _producedChoices(), _infSets(), _accInfSets(numProductStates, boost::none) { // Intentionally left empty. } template<typename ValueType, bool Nondeterministic> uint_fast64_t SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::getMemoryState(uint_fast64_t daState, uint_fast64_t infSet) { return (daState * (_infSets.size()+1))+ infSet; } template<typename ValueType, bool Nondeterministic> void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::setRandom() { this->_randomScheduler = true; } template<typename ValueType, bool Nondeterministic> void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::saveProductEcChoices(automata::AcceptanceCondition const& acceptance, storm::storage::MaximalEndComponent const& mec, std::vector<automata::AcceptanceCondition::acceptance_expr::ptr> const& conjunction, typename transformer::DAProduct<productModelType>::ptr product) { // Save all states contained in this MEC storm::storage::BitVector mecStates(product->getProductModel().getNumberOfStates(), false); for (auto const &stateChoicePair : mec) { mecStates.set(stateChoicePair.first); } // We know the MEC satisfied the conjunction: Save InfSets. std::set<uint_fast64_t> infSetIds; for (auto const& literal : conjunction) { storm::storage::BitVector infSet; if (literal->isTRUE()) { // All states infSet = storm::storage::BitVector(product->getProductModel().getNumberOfStates(), true); } else if (literal->isAtom()) { const cpphoafparser::AtomAcceptance &atom = literal->getAtom(); if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) { if (atom.isNegated()) { infSet = ~acceptance.getAcceptanceSet(atom.getAcceptanceSet()); } else { infSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet()); } } else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) { // If there are FinSets in the conjunction we use the InfSet containing all states in this MEC infSet = mecStates; } } // Save new InfSets if (infSet.size() > 0) { auto it = std::find(_infSets.begin(), _infSets.end(), infSet); if (it == _infSets.end()) { infSetIds.insert(_infSets.size()); _infSets.emplace_back(infSet); } else { // save ID for accCond of the MEC states infSetIds.insert(distance(_infSets.begin(), it)); } } } // Save the InfSets into the _accInfSets for states in this MEC, but only if there weren't assigned to any other MEC yet. storm::storage::BitVector newMecStates(product->getProductModel().getNumberOfStates(), false); for (auto const &stateChoicePair : mec) { if (_accInfSets[stateChoicePair.first] == boost::none) { // state wasn't assigned to any other MEC yet. _accInfSets[stateChoicePair.first].emplace(infSetIds); newMecStates.set(stateChoicePair.first); } } // Define scheduler choices for the states in this MEC (that are not in any other MEC) for (uint_fast64_t id : infSetIds) { // Scheduler that satisfies the MEC acceptance condition (visit each InfSet inf often, or switch to scheduler of another MEC) storm::storage::Scheduler<ValueType> mecScheduler(product->getProductModel().getNumberOfStates()); // States not in InfSet: Compute a scheduler that, with prob=1, reaches the infSet via mecStates starting from states that are not yet in other MEC storm::utility::graph::computeSchedulerProb1E<ValueType>(newMecStates, product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), mecStates, _infSets[id] & mecStates, mecScheduler); // States that already reached the InfSet for (auto pState : (newMecStates & _infSets[id])) { // Prob1E sets an arbitrary choice for the psi states, but we want to stay in this accepting MEC. mecScheduler.setChoice(*mec.getChoicesForState(pState).begin() - product->getProductModel().getTransitionMatrix().getRowGroupIndices()[pState], pState); } // Extract scheduler choices (only for states that are already assigned a scheduler, i.e are in another MEC) for (auto pState : newMecStates) { // We want to reach the InfSet, save choice: <s, q, InfSetID> ---> choice this->_producedChoices.insert({std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), id), mecScheduler.getChoice(pState)}); } } } template<typename ValueType, bool Nondeterministic> void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest, storm::storage::SparseMatrix<ValueType> const& transitionMatrix) { // Compute size of the resulting memory structure: A state <q, infSet> is encoded as (q* (|infSets|+1))+ |infSet| uint64 numMemoryStates = (numDaStates) * (_infSets.size()+1); //+1 for states outside accECs _dontCareStates = std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false)); // Set choices for states or consider them "dontCare" for (storm::storage::sparse::state_type automatonState= 0; automatonState < numDaStates; ++automatonState) { for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) { if (!product->isValidProductState(modelState, automatonState)) { // If the state <s,q> does not occur in the product model, all the infSet combinations are irrelevant for the scheduler. for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) { _dontCareStates[getMemoryState(automatonState, infSet)].set(modelState, true); } } else { auto pState = product->getProductStateIndex(modelState, automatonState); if (acceptingProductStates.get(pState)) { // For states in accepting ECs set the missing MEC-scheduler combinations are "dontCare", they are not reachable using the scheduler choices. for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) { if (_producedChoices.find(std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), infSet)) == _producedChoices.end() ) { _dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true); } } } else { // Extract the choices of the REACH-scheduler (choices to reach an acc. MEC) for the MDP-DA product: <s,q> -> choice. The memory structure corresponds to the "last" copy of the DA (_infSets.get().size()). this->_accInfSets[pState] = std::set<uint_fast64_t>({_infSets.size()}); if (reachScheduler->isDontCare(pState)) { // Mark the maybe States of the untilProbability scheduler as "dontCare" _dontCareStates[getMemoryState(product->getAutomatonState(pState), _infSets.size())].set(product->getModelState(pState), true); } else { // Set choice For non-accepting states that are not in any accepting EC this->_producedChoices.insert({std::make_tuple(product->getModelState(pState),product->getAutomatonState(pState),_infSets.size()),reachScheduler->getChoice(pState)}); }; // All other InfSet combinations are unreachable (dontCare) for (uint_fast64_t infSet = 0; infSet < _infSets.size(); ++infSet) { _dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true); } } } } } // Prepare the memory structure. For that, we need: transitions, initialMemoryStates (and memoryStateLabeling) // The next move function of the memory, will be build based on the transitions of the DA and jumps between InfSets. _memoryTransitions = std::vector<std::vector<storm::storage::BitVector>>(numMemoryStates, std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false))); for (storm::storage::sparse::state_type automatonFrom = 0; automatonFrom < numDaStates; ++automatonFrom) { for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) { uint_fast64_t automatonTo = productBuilder.getSuccessor(automatonFrom, modelState); if (product->isValidProductState(modelState, automatonTo)) { // Add the modelState to one outgoing transition of all states of the form <automatonFrom, InfSet> (Inf=lenInfSet equals not in MEC) // For non-accepting states that are not in any accepting EC we use the 'last' copy of the DA // and for the accepting states we jump through copies of the DA wrt. the infinity sets. for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) { // Check if we need to switch the acceptance condition STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined."); if (_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().count(infSet) == 0) { // the state is is in a different accepting MEC with a different accepting conjunction of InfSets. auto newInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin(); _memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *newInfSet)].set(modelState); } else { // Continue looking for any accepting EC (if we haven't reached one yet) or stay in the corresponding accepting EC, test whether we have reached the next infSet. if (infSet == _infSets.size() || !(_infSets[infSet].get(product->getProductStateIndex(modelState, automatonTo)))) { // <modelState, automatonTo> is not in any accepting EC or does not satisfy the InfSet, we stay there. // Add modelState to the transition from <automatonFrom, InfSet> to <automatonTo, InfSet> _memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, infSet)].set(modelState); } else { STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined."); // <modelState, automatonTo> satisfies the InfSet, find the next one. auto nextInfSet = std::find(_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin(), _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), infSet); STORM_LOG_ASSERT(nextInfSet != _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> does not contain the infSet " << infSet); nextInfSet++; if (nextInfSet == _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end()) { // Start again. nextInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin(); } // Add modelState to the transition from <automatonFrom <mec, InfSet>> to <automatonTo, <mec, NextInfSet>>. _memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *nextInfSet)].set(modelState); } } } } } } // Finished creation of transitions. // Find initial memory states this->_memoryInitialStates = std::vector<uint_fast64_t>(transitionMatrix.getRowGroupCount()); // Save for each relevant model state its initial memory state (get the s-successor q of q0) for (storm::storage::sparse::state_type modelState : modelStatesOfInterest) { storm::storage::sparse::state_type automatonState = productBuilder.getInitialState(modelState); STORM_LOG_ASSERT(product->isValidProductState(modelState, automatonState), "The memory successor state for the model state "<< modelState << "does not exist in the DA-Model Product."); if (acceptingProductStates[product->getProductStateIndex(modelState, automatonState)]) { STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonState)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonState<<"> is undefined."); // If <s, q> is an accepting state start in the first InfSet of <s, q>. auto infSet = _accInfSets[product->getProductStateIndex(modelState, automatonState)].get().begin(); _memoryInitialStates[modelState] = getMemoryState(automatonState, *infSet); } else { _memoryInitialStates[modelState] = getMemoryState(automatonState, _infSets.size()); } } } template<typename ValueType, bool Nondeterministic> storm::storage::Scheduler<ValueType> SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::extractScheduler(storm::models::sparse::Model<ValueType> const& model, bool onlyInitialStatesRelevant) { if (_randomScheduler) { storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates()); for (storm::storage::sparse::state_type state = 0; state < model.getNumberOfStates(); ++state) { scheduler.setChoice(0, state); } return scheduler; } // Otherwise, we compute a scheduler with memory. // Create a memory structure for the MDP scheduler with memory. If hasRelevantStates is set, we only consider initial model states relevant. auto memoryBuilder = storm::storage::MemoryStructureBuilder<ValueType>(this->_memoryTransitions.size(), model, onlyInitialStatesRelevant); // Build the transitions between the memory states: startState to goalState using modelStates (transitionVector). for (storm::storage::sparse::state_type startState = 0; startState < this->_memoryTransitions.size(); ++startState) { for (storm::storage::sparse::state_type goalState = 0; goalState < this->_memoryTransitions.size(); ++goalState) { // Bitvector that represents modelStates the model states that trigger this transition. memoryBuilder.setTransition(startState, goalState, this->_memoryTransitions[startState][goalState]); } } // InitialMemoryStates: Assign an initial memory state model states if (onlyInitialStatesRelevant) { // Only consider initial model states for (uint_fast64_t modelState : model.getInitialStates()) { memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]); } } else { // All model states are relevant for (uint_fast64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) { memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]); } } // Build the memoryStructure. storm::storage::MemoryStructure memoryStructure = memoryBuilder.build(); // Create a scheduler (with memory) for the model from the REACH and MEC scheduler of the MDP-DA-product model. storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates(), memoryStructure); // Use choices in the product model to create a choice based on model state and memory state for (const auto &choice : this->_producedChoices) { // <s, q, InfSet> -> choice storm::storage::sparse::state_type modelState = std::get<0>(choice.first); storm::storage::sparse::state_type daState = std::get<1>(choice.first); uint_fast64_t infSet = std::get<2>(choice.first); STORM_LOG_ASSERT(!this->_dontCareStates[getMemoryState(daState, infSet)].get(modelState), "Tried to set choice for dontCare state."); scheduler.setChoice(choice.second, modelState, getMemoryState(daState, infSet)); } // Set "dontCare" states for (uint_fast64_t memoryState = 0; memoryState < this->_dontCareStates.size(); ++memoryState) { for (auto state : this->_dontCareStates[memoryState]) { scheduler.setDontCare(state, memoryState); } } // Sanity check for created scheduler. STORM_LOG_ASSERT(scheduler.isDeterministicScheduler(), "Expected a deterministic scheduler"); STORM_LOG_ASSERT(!scheduler.isPartialScheduler(), "Expected a fully defined scheduler"); return scheduler; } template class SparseLTLSchedulerHelper<double, false>; template class SparseLTLSchedulerHelper<double, true>; #ifdef STORM_HAVE_CARL template class SparseLTLSchedulerHelper<storm::RationalNumber, false>; template class SparseLTLSchedulerHelper<storm::RationalNumber, true>; template class SparseLTLSchedulerHelper<storm::RationalFunction, false>; #endif } } } }