219 lines
18 KiB

#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, stepBound);
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->performMatrixVectorMultiplication(subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
// Perform some logging.
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5));
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Now solve the created system of linear equations.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(transitionMatrix.getRowCount());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
// Perform one single matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix);
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result, &totalRewardVector, stepBound);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards() || rewardModel.hasStateActionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the model.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result, nullptr, stepCount);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return computeReachabilityRewards(transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) { return rewardModel.getTotalRewardVector(numberOfRows, transitionMatrix, maybeStates); }, targetStates, qualitative, linearEquationSolverFactory);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return computeReachabilityRewards(transitionMatrix, backwardTransitions,
[&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) {
std::vector<ValueType> result(numberOfRows);
storm::utility::vector::selectVectorValues(result, maybeStates, totalStateRewardVector);
return result;
},
targetStates, qualitative, linearEquationSolverFactory);
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType> const&(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 1 for each element. This is the initial guess for
// the iterative solvers.
std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>());
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = totalStateRewardVectorGetter(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseCtmcCslHelper<ValueType, RewardModelType>::computeLongRunAverage(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
}
template class SparseDtmcPrctlHelper<double>;
}
}
}