#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h" #include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h" #include "src/utility/macros.h" #include "src/utility/vector.h" #include "src/utility/graph.h" #include "src/exceptions/InvalidStateException.h" #include "src/exceptions/InvalidPropertyException.h" namespace storm { namespace modelchecker { namespace helper { template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>()); // If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis. storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, stepBound); maybeStates &= ~psiStates; STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); if (!maybeStates.empty()) { // We can eliminate the rows and columns from the original transition probability matrix that have probability 0. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true); // Create the vector of one-step probabilities to go to target states. std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates); // Create the vector with which to multiply. std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits()); // Perform the matrix vector multiplication as often as required by the formula bound. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix); solver->performMatrixVectorMultiplication(subresult, &b, stepBound); // Set the values of the resulting vector accordingly. storm::utility::vector::setVectorValues(result, maybeStates, subresult); } storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>()); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // We need to identify the states which have to be taken out of the matrix, i.e. // all states that have probability 0 and 1 of satisfying the until-formula. std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates); storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first); storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second); // Perform some logging. storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(transitionMatrix.getRowCount()); // Check whether we need to compute exact probabilities for some states. if (qualitative) { // Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5)); } else { if (!maybeStates.empty()) { // In this case we have have to compute the probabilities. // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true); // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); // Initialize the x vector with 0.5 for each element. This is the initial guess for // the iterative solvers. It should be safe as for all 'maybe' states we know that the // probability is strictly larger than 0. std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5)); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1); // Now solve the created system of linear equations. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix); solver->solveEquationSystem(x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>()); storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>()); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Create the vector with which to multiply and initialize it correctly. std::vector<ValueType> result(transitionMatrix.getRowCount()); storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>()); // Perform one single matrix-vector multiplication. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(result); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Compute the reward vector to add in each step based on the available reward models. std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix); // Initialize result to either the state rewards of the model or the null vector. std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices()); // Perform the matrix vector multiplication as often as required by the formula bound. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(result, &totalRewardVector, stepBound); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Only compute the result if the model has a state-based reward this->getModel(). STORM_LOG_THROW(rewardModel.hasStateRewards() || rewardModel.hasStateActionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula."); // Initialize result to state rewards of the model. std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices()); // Perform the matrix vector multiplication as often as required by the formula bound. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix); solver->performMatrixVectorMultiplication(result, nullptr, stepCount); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { return computeReachabilityRewards(transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) { return rewardModel.getTotalRewardVector(numberOfRows, transitionMatrix, maybeStates); }, targetStates, qualitative, linearEquationSolverFactory); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { return computeReachabilityRewards(transitionMatrix, backwardTransitions, [&] (uint_fast64_t numberOfRows, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) { std::vector<ValueType> result(numberOfRows); storm::utility::vector::selectVectorValues(result, maybeStates, totalStateRewardVector); return result; }, targetStates, qualitative, linearEquationSolverFactory); } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType> const&(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { // Determine which states have a reward of infinity by definition. storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true); storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates); infinityStates.complement(); storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates; STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states."); STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); // Create resulting vector. std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>()); // Check whether we need to compute exact rewards for some states. if (qualitative) { // Set the values for all maybe-states to 1 to indicate that their reward values // are neither 0 nor infinity. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>()); } else { // In this case we have to compute the reward values for the remaining states. // We can eliminate the rows and columns from the original transition probability matrix. storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true); // Converting the matrix from the fixpoint notation to the form needed for the equation // system. That is, we go from x = A*x + b to (I-A)x = b. submatrix.convertToEquationSystem(); // Initialize the x vector with 1 for each element. This is the initial guess for // the iterative solvers. std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>()); // Prepare the right-hand side of the equation system. std::vector<ValueType> b = totalStateRewardVectorGetter(submatrix.getRowCount(), transitionMatrix, maybeStates); // Now solve the resulting equation system. std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix); solver->solveEquationSystem(x, b); // Set values of resulting vector according to result. storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x); } // Set values of resulting vector that are known exactly. storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>()); return result; } template<typename ValueType, typename RewardModelType> std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) { return SparseCtmcCslHelper<ValueType, RewardModelType>::computeLongRunAverage(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory); } template class SparseDtmcPrctlHelper<double>; } } }