386 lines
22 KiB

#include "src/storage/BisimulationDecomposition2.h"
#include <algorithm>
#include <unordered_map>
#include <chrono>
namespace storm {
namespace storage {
template<typename ValueType>
BisimulationDecomposition2<ValueType>::Block::Block(storm::storage::sparse::state_type begin, storm::storage::sparse::state_type end, Block* prev, Block* next) : begin(begin), end(end), prev(prev), next(next), numberOfStates(end - begin), isMarked(false) {
// Intentionally left empty.
}
template<typename ValueType>
void BisimulationDecomposition2<ValueType>::Block::print(Partition const& partition) const {
std::cout << "this " << this << std::endl;
std::cout << "begin: " << this->begin << " and end: " << this->end << " (number of states: " << this->numberOfStates << ")" << std::endl;
std::cout << "next: " << this->next << " and prev " << this->prev << std::endl;
std::cout << "states:" << std::endl;
for (storm::storage::sparse::state_type index = this->begin; index < this->end; ++index) {
std::cout << partition.states[index] << " " << std::endl;
}
}
template<typename ValueType>
BisimulationDecomposition2<ValueType>::Partition::Partition(std::size_t numberOfStates) : stateToBlockMapping(numberOfStates), states(numberOfStates), positions(numberOfStates), values(numberOfStates) {
this->blocks.back().itToSelf = blocks.emplace(this->blocks.end(), 0, numberOfStates, nullptr, nullptr);
for (storm::storage::sparse::state_type state = 0; state < numberOfStates; ++state) {
states[state] = state;
positions[state] = state;
stateToBlockMapping[state] = &blocks.back();
}
}
template<typename ValueType>
void BisimulationDecomposition2<ValueType>::Partition::splitLabel(storm::storage::BitVector const& statesWithLabel) {
for (auto blockIterator = this->blocks.begin(), ite = this->blocks.end(); blockIterator != ite; ) { // The update of the loop was intentionally moved to the bottom of the loop.
Block& block = *blockIterator;
// Sort the range of the block such that all states that have the label are moved to the front.
std::sort(this->states.begin() + block.begin, this->states.begin() + block.end, [&statesWithLabel] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return statesWithLabel.get(a) && !statesWithLabel.get(b); } );
// Update the positions vector.
storm::storage::sparse::state_type position = block.begin;
for (auto stateIt = this->states.begin() + block.begin, stateIte = this->states.begin() + block.end; stateIt != stateIte; ++stateIt, ++position) {
this->positions[*stateIt] = position;
}
// Now we can find the first position in the block that does not have the label and create new blocks.
std::vector<storm::storage::sparse::state_type>::iterator it = std::find_if(this->states.begin() + block.begin, this->states.begin() + block.end, [&] (storm::storage::sparse::state_type const& a) { return !statesWithLabel.get(a); });
// If not all the states agreed on the validity of the label, we need to split the block.
if (it != this->states.begin() + block.begin && it != this->states.begin() + block.end) {
auto cutPoint = std::distance(this->states.begin(), it);
++blockIterator;
auto newBlockIterator = this->blocks.emplace(blockIterator, cutPoint, block.end, &block, block.next);
newBlockIterator->itToSelf = newBlockIterator;
// Make the old block end at the cut position and insert a new block after it.
block.end = cutPoint;
block.next = &(*newBlockIterator);
block.numberOfStates = block.end - block.begin;
// Update the block mapping for all states that we just removed from the block.
for (auto it = this->states.begin() + newBlockIterator->begin, ite = this->states.begin() + newBlockIterator->end; it != ite; ++it) {
stateToBlockMapping[*it] = &(*newBlockIterator);
}
} else {
// Otherwise, we simply proceed to the next block.
++blockIterator;
}
}
}
template<typename ValueType>
void BisimulationDecomposition2<ValueType>::Partition::print() const {
for (auto const& block : this->blocks) {
block.print(*this);
}
std::cout << "states" << std::endl;
for (auto const& state : states) {
std::cout << state << " ";
}
std::cout << std::endl << "positions: " << std::endl;
for (auto const& index : positions) {
std::cout << index << " ";
}
std::cout << std::endl << "state to block mapping: " << std::endl;
for (auto const& block : stateToBlockMapping) {
std::cout << block << " ";
}
std::cout << std::endl;
}
template<typename ValueType>
std::size_t BisimulationDecomposition2<ValueType>::Partition::size() const {
return this->blocks.size();
}
template<typename ValueType>
BisimulationDecomposition2<ValueType>::BisimulationDecomposition2(storm::models::Dtmc<ValueType> const& dtmc, bool weak) {
computeBisimulationEquivalenceClasses(dtmc, weak);
}
template<typename ValueType>
void BisimulationDecomposition2<ValueType>::computeBisimulationEquivalenceClasses(storm::models::Dtmc<ValueType> const& dtmc, bool weak) {
std::chrono::high_resolution_clock::time_point totalStart = std::chrono::high_resolution_clock::now();
// We start by computing the initial partition.
Partition partition(dtmc.getNumberOfStates());
partition.print();
for (auto const& label : dtmc.getStateLabeling().getAtomicPropositions()) {
if (label == "init") {
continue;
}
partition.splitLabel(dtmc.getLabeledStates(label));
}
std::cout << "initial partition:" << std::endl;
partition.print();
// Initially, all blocks are potential splitter, so we insert them in the splitterQueue.
std::deque<Block*> splitterQueue;
std::for_each(partition.blocks.begin(), partition.blocks.end(), [&] (Block& a) { splitterQueue.push_back(&a); });
storm::storage::SparseMatrix<ValueType> backwardTransitions = dtmc.getBackwardTransitions();
// Then perform the actual splitting until there are no more splitters.
while (!splitterQueue.empty()) {
splitPartition(backwardTransitions, *splitterQueue.front(), partition, splitterQueue);
splitterQueue.pop_front();
std::cout << "####### updated partition ##############" << std::endl;
partition.print();
std::cout << "####### end of updated partition #######" << std::endl;
}
std::chrono::high_resolution_clock::duration totalTime = std::chrono::high_resolution_clock::now() - totalStart;
std::cout << "Bisimulation took " << std::chrono::duration_cast<std::chrono::milliseconds>(totalTime).count() << "ms." << std::endl;
}
template<typename ValueType>
std::size_t BisimulationDecomposition2<ValueType>::splitBlockProbabilities(Block* block, Partition& partition, std::deque<Block*>& splitterQueue) {
Block& currentBlock = *block;
// Sort the states in the block based on their probabilities.
std::sort(partition.states.begin() + currentBlock.begin, partition.states.begin() + currentBlock.end, [&partition] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return partition.values[a] < partition.values[b]; } );
// FIXME: This can probably be done more efficiently.
std::sort(partition.values.begin() + currentBlock.begin, partition.values.begin() + currentBlock.end);
// Update the positions vector.
storm::storage::sparse::state_type position = currentBlock.begin;
for (auto stateIt = partition.states.begin() + currentBlock.begin, stateIte = partition.states.begin() + currentBlock.end; stateIt != stateIte; ++stateIt, ++position) {
partition.positions[*stateIt] = position;
}
// Finally, we need to scan the ranges of states that agree on the probability.
storm::storage::sparse::state_type beginIndex = currentBlock.begin;
storm::storage::sparse::state_type currentIndex = beginIndex;
storm::storage::sparse::state_type endIndex = currentBlock.end;
Block* prevBlock = block->prev;
std::list<Block*> createdBlocks;
std::cout << currentIndex << " < " << endIndex << std::endl;
while (currentIndex < endIndex) {
ValueType& currentValue = *(partition.values.begin() + currentIndex);
++currentIndex;
ValueType* nextValuePtr = &currentValue;
while (currentIndex < endIndex && std::abs(currentValue - *nextValuePtr) < 1e-6) {
++currentIndex;
++nextValuePtr;
}
// Create a new block from the states that agree on the values.
typename std::list<Block>::iterator newBlockIterator = partition.blocks.emplace(currentBlock.itToSelf, beginIndex, endIndex, prevBlock, currentBlock.next);
newBlockIterator->itToSelf = newBlockIterator;
if (prevBlock != nullptr) {
prevBlock->next = &(*newBlockIterator);
}
prevBlock = &(*newBlockIterator);
if (prevBlock->numberOfStates > 1) {
createdBlocks.emplace_back(prevBlock);
}
}
for (auto block : createdBlocks) {
splitterQueue.push_back(block);
}
return createdBlocks.size();
}
template<typename ValueType>
std::size_t BisimulationDecomposition2<ValueType>::splitPartition(storm::storage::SparseMatrix<ValueType> const& backwardTransitions, Block const& splitter, Partition& partition, std::deque<Block*>& splitterQueue) {
std::cout << "getting block " << &splitter << " as splitter" << std::endl;
splitter.print(partition);
std::list<Block*> predecessorBlocks;
// Iterate over all states of the splitter and check its predecessors.
for (auto stateIterator = partition.states.begin() + splitter.begin, stateIte = partition.states.begin() + splitter.end; stateIterator != stateIte; ++stateIterator) {
storm::storage::sparse::state_type& state = *stateIterator;
for (auto const& predecessorEntry : backwardTransitions.getRow(state)) {
storm::storage::sparse::state_type predecessor = predecessorEntry.getColumn();
std::cout << "found pred " << predecessor << std::endl;
Block* predecessorBlock = partition.stateToBlockMapping[predecessor];
std::cout << "predecessor block " << std::endl;
predecessorBlock->print(partition);
// If the predecessor block has just one state, there is no point in splitting it.
if (predecessorBlock->numberOfStates <= 1) {
std::cout << "continuing" << std::endl;
continue;
}
storm::storage::sparse::state_type predecessorPosition = partition.positions[predecessor];
// If we have not seen this predecessor before, we move it to a part near the beginning of the block.
std::cout << "predecessor position: " << predecessorPosition << " and begin " << predecessorBlock->begin << std::endl;
if (predecessorPosition >= predecessorBlock->begin) {
std::swap(partition.states[predecessorPosition], partition.states[predecessorBlock->begin]);
std::cout << "swapping positions of " << predecessor << " and " << partition.states[predecessorPosition] << std::endl;
storm::storage::sparse::state_type tmp = partition.positions[partition.states[predecessorPosition]];
partition.positions[partition.states[predecessorPosition]] = partition.positions[predecessor];
partition.positions[predecessor] = tmp;
// std::swap(partition.positions[predecessor], partition.positions[predecessorBlock->begin]);
++predecessorBlock->begin;
std::cout << "incrementing begin... " << std::endl;
partition.values[predecessor] = predecessorEntry.getValue();
} else {
// Otherwise, we just need to update the probability for this predecessor.
std::cout << "updating probability" << std::endl;
partition.values[predecessor] += predecessorEntry.getValue();
}
if (!predecessorBlock->isMarked) {
predecessorBlocks.emplace_back(predecessorBlock);
predecessorBlock->isMarked = true;
}
}
}
std::list<Block*> blocksToSplit;
// Now, we can iterate over the predecessor blocks and see whether we have to create a new block for
// predecessors of the splitter.
for (auto block : predecessorBlocks) {
block->isMarked = false;
// If we have moved the begin of the block to somewhere in the middle of the block, we need to split it.
if (block->begin != block->end) {
std::cout << "moved begin to " << block->begin << " and end to " << block->end << std::endl;
storm::storage::sparse::state_type tmpBegin = block->begin;
storm::storage::sparse::state_type tmpEnd = block->end;
block->begin = block->prev != nullptr ? block->prev->end : 0;
std::cout << "begin: " << block->begin << " and not-null? " << (block->prev != nullptr) << ": " << block->prev << std::endl;
block->end = tmpBegin;
block->numberOfStates = block->end - block->begin;
// Create a new block that holds all states that do not have a successor in the current splitter.
typename std::list<Block>::iterator it = partition.blocks.emplace(block->next != nullptr ? block->next->itToSelf : partition.blocks.end(), tmpBegin, tmpEnd, block, block->next);
Block* newBlock = &(*it);
newBlock->itToSelf = it;
if (block->next != nullptr) {
block->next->prev = newBlock;
}
block->next = newBlock;
std::cout << "created new block " << std::endl;
newBlock->print(partition);
// Update the block mapping in the partition.
for (auto it = partition.states.begin() + newBlock->begin, ite = partition.states.begin() + newBlock->end; it != ite; ++it) {
partition.stateToBlockMapping[*it] = newBlock;
}
// Mark the half of the block that can be further refined using the probability information.
blocksToSplit.emplace_back(block);
block->print(partition);
splitterQueue.push_back(newBlock);
} else {
std::cout << "found block to split" << std::endl;
blocksToSplit.emplace_back(block);
}
}
// Finally, we walk through the blocks that have a transition to the splitter and split them using
// probabilistic information.
for (auto block : blocksToSplit) {
if (block->numberOfStates <= 1) {
continue;
}
splitBlockProbabilities(block, partition, splitterQueue);
}
return 0;
}
// template<typename ValueType>
// std::size_t BisimulationDecomposition2<ValueType>::splitPartition(storm::models::Dtmc<ValueType> const& dtmc, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::size_t const& blockId, std::vector<std::size_t>& stateToBlockMapping, storm::storage::BitVector& blocksInSplitterQueue, std::deque<std::size_t>& splitterQueue, bool weakBisimulation) {
// std::chrono::high_resolution_clock::time_point totalStart = std::chrono::high_resolution_clock::now();
// std::unordered_map<storm::storage::Distribution<ValueType>, typename BisimulationDecomposition2<ValueType>::block_type> distributionToNewBlocks;
//
// // Traverse all states of the block and check whether they have different distributions.
// std::chrono::high_resolution_clock::time_point gatherStart = std::chrono::high_resolution_clock::now();
// for (auto const& state : this->blocks[blockId]) {
// // Now construct the distribution of this state wrt. to the current partitioning.
// storm::storage::Distribution<ValueType> distribution;
// for (auto const& successorEntry : dtmc.getTransitionMatrix().getRow(state)) {
// distribution.addProbability(static_cast<storm::storage::sparse::state_type>(stateToBlockMapping[successorEntry.getColumn()]), successorEntry.getValue());
// }
//
// // If we are requested to compute a weak bisimulation, we need to scale the distribution with the
// // self-loop probability.
// if (weakBisimulation) {
// distribution.scale(blockId);
// }
//
// // If the distribution already exists, we simply add the state. Otherwise, we open a new block.
// auto distributionIterator = distributionToNewBlocks.find(distribution);
// if (distributionIterator != distributionToNewBlocks.end()) {
// distributionIterator->second.insert(state);
// } else {
// distributionToNewBlocks[distribution].insert(state);
// }
// }
//
// std::chrono::high_resolution_clock::duration gatherTime = std::chrono::high_resolution_clock::now() - gatherStart;
// std::cout << "time to iterate over all states was " << std::chrono::duration_cast<std::chrono::milliseconds>(gatherTime).count() << "ms." << std::endl;
//
// // Now we are ready to split the block.
// if (distributionToNewBlocks.size() == 1) {
// // If there is just one behavior, we just set the distribution as the new one for this block.
// // distributions[blockId] = std::move(distributionToNewBlocks.begin()->first);
// } else {
// // In this case, we need to split the block.
// typename BisimulationDecomposition2<ValueType>::block_type tmpBlock;
//
// auto distributionIterator = distributionToNewBlocks.begin();
// tmpBlock = std::move(distributionIterator->second);
// std::swap(this->blocks[blockId], tmpBlock);
// ++distributionIterator;
//
// // Remember the number of blocks prior to splitting for later use.
// std::size_t beforeNumberOfBlocks = this->blocks.size();
//
// for (; distributionIterator != distributionToNewBlocks.end(); ++distributionIterator) {
// // In this case, we need to move the newly created block to the end of the list of actual blocks.
// this->blocks.emplace_back(std::move(distributionIterator->second));
//
// // Update the mapping of states to their blocks.
// std::size_t newBlockId = this->blocks.size() - 1;
// for (auto const& state : this->blocks.back()) {
// stateToBlockMapping[state] = newBlockId;
// }
// }
//
// // Insert blocks that possibly need a refinement into the queue.
// for (auto const& state : tmpBlock) {
// for (auto const& predecessor : backwardTransitions.getRow(state)) {
// if (!blocksInRefinementQueue.get(stateToBlockMapping[predecessor.getColumn()])) {
// blocksInRefinementQueue.set(stateToBlockMapping[predecessor.getColumn()]);
// refinementQueue.push_back(stateToBlockMapping[predecessor.getColumn()]);
// }
// }
// }
// }
//
// std::chrono::high_resolution_clock::duration totalTime = std::chrono::high_resolution_clock::now() - totalStart;
// std::cout << "refinement of block " << blockId << " took " << std::chrono::duration_cast<std::chrono::milliseconds>(totalTime).count() << "ms." << std::endl;
// return distributionToNewBlocks.size();
// }
template class BisimulationDecomposition2<double>;
}
}