#include "src/storage/BisimulationDecomposition2.h" #include <algorithm> #include <unordered_map> #include <chrono> namespace storm { namespace storage { template<typename ValueType> BisimulationDecomposition2<ValueType>::Block::Block(storm::storage::sparse::state_type begin, storm::storage::sparse::state_type end, Block* prev, Block* next) : begin(begin), end(end), prev(prev), next(next), numberOfStates(end - begin), isMarked(false) { // Intentionally left empty. } template<typename ValueType> void BisimulationDecomposition2<ValueType>::Block::print(Partition const& partition) const { std::cout << "this " << this << std::endl; std::cout << "begin: " << this->begin << " and end: " << this->end << " (number of states: " << this->numberOfStates << ")" << std::endl; std::cout << "next: " << this->next << " and prev " << this->prev << std::endl; std::cout << "states:" << std::endl; for (storm::storage::sparse::state_type index = this->begin; index < this->end; ++index) { std::cout << partition.states[index] << " " << std::endl; } } template<typename ValueType> BisimulationDecomposition2<ValueType>::Partition::Partition(std::size_t numberOfStates) : stateToBlockMapping(numberOfStates), states(numberOfStates), positions(numberOfStates), values(numberOfStates) { this->blocks.back().itToSelf = blocks.emplace(this->blocks.end(), 0, numberOfStates, nullptr, nullptr); for (storm::storage::sparse::state_type state = 0; state < numberOfStates; ++state) { states[state] = state; positions[state] = state; stateToBlockMapping[state] = &blocks.back(); } } template<typename ValueType> void BisimulationDecomposition2<ValueType>::Partition::splitLabel(storm::storage::BitVector const& statesWithLabel) { for (auto blockIterator = this->blocks.begin(), ite = this->blocks.end(); blockIterator != ite; ) { // The update of the loop was intentionally moved to the bottom of the loop. Block& block = *blockIterator; // Sort the range of the block such that all states that have the label are moved to the front. std::sort(this->states.begin() + block.begin, this->states.begin() + block.end, [&statesWithLabel] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return statesWithLabel.get(a) && !statesWithLabel.get(b); } ); // Update the positions vector. storm::storage::sparse::state_type position = block.begin; for (auto stateIt = this->states.begin() + block.begin, stateIte = this->states.begin() + block.end; stateIt != stateIte; ++stateIt, ++position) { this->positions[*stateIt] = position; } // Now we can find the first position in the block that does not have the label and create new blocks. std::vector<storm::storage::sparse::state_type>::iterator it = std::find_if(this->states.begin() + block.begin, this->states.begin() + block.end, [&] (storm::storage::sparse::state_type const& a) { return !statesWithLabel.get(a); }); // If not all the states agreed on the validity of the label, we need to split the block. if (it != this->states.begin() + block.begin && it != this->states.begin() + block.end) { auto cutPoint = std::distance(this->states.begin(), it); ++blockIterator; auto newBlockIterator = this->blocks.emplace(blockIterator, cutPoint, block.end, &block, block.next); newBlockIterator->itToSelf = newBlockIterator; // Make the old block end at the cut position and insert a new block after it. block.end = cutPoint; block.next = &(*newBlockIterator); block.numberOfStates = block.end - block.begin; // Update the block mapping for all states that we just removed from the block. for (auto it = this->states.begin() + newBlockIterator->begin, ite = this->states.begin() + newBlockIterator->end; it != ite; ++it) { stateToBlockMapping[*it] = &(*newBlockIterator); } } else { // Otherwise, we simply proceed to the next block. ++blockIterator; } } } template<typename ValueType> void BisimulationDecomposition2<ValueType>::Partition::print() const { for (auto const& block : this->blocks) { block.print(*this); } std::cout << "states" << std::endl; for (auto const& state : states) { std::cout << state << " "; } std::cout << std::endl << "positions: " << std::endl; for (auto const& index : positions) { std::cout << index << " "; } std::cout << std::endl << "state to block mapping: " << std::endl; for (auto const& block : stateToBlockMapping) { std::cout << block << " "; } std::cout << std::endl; } template<typename ValueType> std::size_t BisimulationDecomposition2<ValueType>::Partition::size() const { return this->blocks.size(); } template<typename ValueType> BisimulationDecomposition2<ValueType>::BisimulationDecomposition2(storm::models::Dtmc<ValueType> const& dtmc, bool weak) { computeBisimulationEquivalenceClasses(dtmc, weak); } template<typename ValueType> void BisimulationDecomposition2<ValueType>::computeBisimulationEquivalenceClasses(storm::models::Dtmc<ValueType> const& dtmc, bool weak) { std::chrono::high_resolution_clock::time_point totalStart = std::chrono::high_resolution_clock::now(); // We start by computing the initial partition. Partition partition(dtmc.getNumberOfStates()); partition.print(); for (auto const& label : dtmc.getStateLabeling().getAtomicPropositions()) { if (label == "init") { continue; } partition.splitLabel(dtmc.getLabeledStates(label)); } std::cout << "initial partition:" << std::endl; partition.print(); // Initially, all blocks are potential splitter, so we insert them in the splitterQueue. std::deque<Block*> splitterQueue; std::for_each(partition.blocks.begin(), partition.blocks.end(), [&] (Block& a) { splitterQueue.push_back(&a); }); storm::storage::SparseMatrix<ValueType> backwardTransitions = dtmc.getBackwardTransitions(); // Then perform the actual splitting until there are no more splitters. while (!splitterQueue.empty()) { splitPartition(backwardTransitions, *splitterQueue.front(), partition, splitterQueue); splitterQueue.pop_front(); std::cout << "####### updated partition ##############" << std::endl; partition.print(); std::cout << "####### end of updated partition #######" << std::endl; } std::chrono::high_resolution_clock::duration totalTime = std::chrono::high_resolution_clock::now() - totalStart; std::cout << "Bisimulation took " << std::chrono::duration_cast<std::chrono::milliseconds>(totalTime).count() << "ms." << std::endl; } template<typename ValueType> std::size_t BisimulationDecomposition2<ValueType>::splitBlockProbabilities(Block* block, Partition& partition, std::deque<Block*>& splitterQueue) { Block& currentBlock = *block; // Sort the states in the block based on their probabilities. std::sort(partition.states.begin() + currentBlock.begin, partition.states.begin() + currentBlock.end, [&partition] (storm::storage::sparse::state_type const& a, storm::storage::sparse::state_type const& b) { return partition.values[a] < partition.values[b]; } ); // FIXME: This can probably be done more efficiently. std::sort(partition.values.begin() + currentBlock.begin, partition.values.begin() + currentBlock.end); // Update the positions vector. storm::storage::sparse::state_type position = currentBlock.begin; for (auto stateIt = partition.states.begin() + currentBlock.begin, stateIte = partition.states.begin() + currentBlock.end; stateIt != stateIte; ++stateIt, ++position) { partition.positions[*stateIt] = position; } // Finally, we need to scan the ranges of states that agree on the probability. storm::storage::sparse::state_type beginIndex = currentBlock.begin; storm::storage::sparse::state_type currentIndex = beginIndex; storm::storage::sparse::state_type endIndex = currentBlock.end; Block* prevBlock = block->prev; std::list<Block*> createdBlocks; std::cout << currentIndex << " < " << endIndex << std::endl; while (currentIndex < endIndex) { ValueType& currentValue = *(partition.values.begin() + currentIndex); ++currentIndex; ValueType* nextValuePtr = ¤tValue; while (currentIndex < endIndex && std::abs(currentValue - *nextValuePtr) < 1e-6) { ++currentIndex; ++nextValuePtr; } // Create a new block from the states that agree on the values. typename std::list<Block>::iterator newBlockIterator = partition.blocks.emplace(currentBlock.itToSelf, beginIndex, endIndex, prevBlock, currentBlock.next); newBlockIterator->itToSelf = newBlockIterator; if (prevBlock != nullptr) { prevBlock->next = &(*newBlockIterator); } prevBlock = &(*newBlockIterator); if (prevBlock->numberOfStates > 1) { createdBlocks.emplace_back(prevBlock); } } for (auto block : createdBlocks) { splitterQueue.push_back(block); } return createdBlocks.size(); } template<typename ValueType> std::size_t BisimulationDecomposition2<ValueType>::splitPartition(storm::storage::SparseMatrix<ValueType> const& backwardTransitions, Block const& splitter, Partition& partition, std::deque<Block*>& splitterQueue) { std::cout << "getting block " << &splitter << " as splitter" << std::endl; splitter.print(partition); std::list<Block*> predecessorBlocks; // Iterate over all states of the splitter and check its predecessors. for (auto stateIterator = partition.states.begin() + splitter.begin, stateIte = partition.states.begin() + splitter.end; stateIterator != stateIte; ++stateIterator) { storm::storage::sparse::state_type& state = *stateIterator; for (auto const& predecessorEntry : backwardTransitions.getRow(state)) { storm::storage::sparse::state_type predecessor = predecessorEntry.getColumn(); std::cout << "found pred " << predecessor << std::endl; Block* predecessorBlock = partition.stateToBlockMapping[predecessor]; std::cout << "predecessor block " << std::endl; predecessorBlock->print(partition); // If the predecessor block has just one state, there is no point in splitting it. if (predecessorBlock->numberOfStates <= 1) { std::cout << "continuing" << std::endl; continue; } storm::storage::sparse::state_type predecessorPosition = partition.positions[predecessor]; // If we have not seen this predecessor before, we move it to a part near the beginning of the block. std::cout << "predecessor position: " << predecessorPosition << " and begin " << predecessorBlock->begin << std::endl; if (predecessorPosition >= predecessorBlock->begin) { std::swap(partition.states[predecessorPosition], partition.states[predecessorBlock->begin]); std::cout << "swapping positions of " << predecessor << " and " << partition.states[predecessorPosition] << std::endl; storm::storage::sparse::state_type tmp = partition.positions[partition.states[predecessorPosition]]; partition.positions[partition.states[predecessorPosition]] = partition.positions[predecessor]; partition.positions[predecessor] = tmp; // std::swap(partition.positions[predecessor], partition.positions[predecessorBlock->begin]); ++predecessorBlock->begin; std::cout << "incrementing begin... " << std::endl; partition.values[predecessor] = predecessorEntry.getValue(); } else { // Otherwise, we just need to update the probability for this predecessor. std::cout << "updating probability" << std::endl; partition.values[predecessor] += predecessorEntry.getValue(); } if (!predecessorBlock->isMarked) { predecessorBlocks.emplace_back(predecessorBlock); predecessorBlock->isMarked = true; } } } std::list<Block*> blocksToSplit; // Now, we can iterate over the predecessor blocks and see whether we have to create a new block for // predecessors of the splitter. for (auto block : predecessorBlocks) { block->isMarked = false; // If we have moved the begin of the block to somewhere in the middle of the block, we need to split it. if (block->begin != block->end) { std::cout << "moved begin to " << block->begin << " and end to " << block->end << std::endl; storm::storage::sparse::state_type tmpBegin = block->begin; storm::storage::sparse::state_type tmpEnd = block->end; block->begin = block->prev != nullptr ? block->prev->end : 0; std::cout << "begin: " << block->begin << " and not-null? " << (block->prev != nullptr) << ": " << block->prev << std::endl; block->end = tmpBegin; block->numberOfStates = block->end - block->begin; // Create a new block that holds all states that do not have a successor in the current splitter. typename std::list<Block>::iterator it = partition.blocks.emplace(block->next != nullptr ? block->next->itToSelf : partition.blocks.end(), tmpBegin, tmpEnd, block, block->next); Block* newBlock = &(*it); newBlock->itToSelf = it; if (block->next != nullptr) { block->next->prev = newBlock; } block->next = newBlock; std::cout << "created new block " << std::endl; newBlock->print(partition); // Update the block mapping in the partition. for (auto it = partition.states.begin() + newBlock->begin, ite = partition.states.begin() + newBlock->end; it != ite; ++it) { partition.stateToBlockMapping[*it] = newBlock; } // Mark the half of the block that can be further refined using the probability information. blocksToSplit.emplace_back(block); block->print(partition); splitterQueue.push_back(newBlock); } else { std::cout << "found block to split" << std::endl; blocksToSplit.emplace_back(block); } } // Finally, we walk through the blocks that have a transition to the splitter and split them using // probabilistic information. for (auto block : blocksToSplit) { if (block->numberOfStates <= 1) { continue; } splitBlockProbabilities(block, partition, splitterQueue); } return 0; } // template<typename ValueType> // std::size_t BisimulationDecomposition2<ValueType>::splitPartition(storm::models::Dtmc<ValueType> const& dtmc, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::size_t const& blockId, std::vector<std::size_t>& stateToBlockMapping, storm::storage::BitVector& blocksInSplitterQueue, std::deque<std::size_t>& splitterQueue, bool weakBisimulation) { // std::chrono::high_resolution_clock::time_point totalStart = std::chrono::high_resolution_clock::now(); // std::unordered_map<storm::storage::Distribution<ValueType>, typename BisimulationDecomposition2<ValueType>::block_type> distributionToNewBlocks; // // // Traverse all states of the block and check whether they have different distributions. // std::chrono::high_resolution_clock::time_point gatherStart = std::chrono::high_resolution_clock::now(); // for (auto const& state : this->blocks[blockId]) { // // Now construct the distribution of this state wrt. to the current partitioning. // storm::storage::Distribution<ValueType> distribution; // for (auto const& successorEntry : dtmc.getTransitionMatrix().getRow(state)) { // distribution.addProbability(static_cast<storm::storage::sparse::state_type>(stateToBlockMapping[successorEntry.getColumn()]), successorEntry.getValue()); // } // // // If we are requested to compute a weak bisimulation, we need to scale the distribution with the // // self-loop probability. // if (weakBisimulation) { // distribution.scale(blockId); // } // // // If the distribution already exists, we simply add the state. Otherwise, we open a new block. // auto distributionIterator = distributionToNewBlocks.find(distribution); // if (distributionIterator != distributionToNewBlocks.end()) { // distributionIterator->second.insert(state); // } else { // distributionToNewBlocks[distribution].insert(state); // } // } // // std::chrono::high_resolution_clock::duration gatherTime = std::chrono::high_resolution_clock::now() - gatherStart; // std::cout << "time to iterate over all states was " << std::chrono::duration_cast<std::chrono::milliseconds>(gatherTime).count() << "ms." << std::endl; // // // Now we are ready to split the block. // if (distributionToNewBlocks.size() == 1) { // // If there is just one behavior, we just set the distribution as the new one for this block. // // distributions[blockId] = std::move(distributionToNewBlocks.begin()->first); // } else { // // In this case, we need to split the block. // typename BisimulationDecomposition2<ValueType>::block_type tmpBlock; // // auto distributionIterator = distributionToNewBlocks.begin(); // tmpBlock = std::move(distributionIterator->second); // std::swap(this->blocks[blockId], tmpBlock); // ++distributionIterator; // // // Remember the number of blocks prior to splitting for later use. // std::size_t beforeNumberOfBlocks = this->blocks.size(); // // for (; distributionIterator != distributionToNewBlocks.end(); ++distributionIterator) { // // In this case, we need to move the newly created block to the end of the list of actual blocks. // this->blocks.emplace_back(std::move(distributionIterator->second)); // // // Update the mapping of states to their blocks. // std::size_t newBlockId = this->blocks.size() - 1; // for (auto const& state : this->blocks.back()) { // stateToBlockMapping[state] = newBlockId; // } // } // // // Insert blocks that possibly need a refinement into the queue. // for (auto const& state : tmpBlock) { // for (auto const& predecessor : backwardTransitions.getRow(state)) { // if (!blocksInRefinementQueue.get(stateToBlockMapping[predecessor.getColumn()])) { // blocksInRefinementQueue.set(stateToBlockMapping[predecessor.getColumn()]); // refinementQueue.push_back(stateToBlockMapping[predecessor.getColumn()]); // } // } // } // } // // std::chrono::high_resolution_clock::duration totalTime = std::chrono::high_resolution_clock::now() - totalStart; // std::cout << "refinement of block " << blockId << " took " << std::chrono::duration_cast<std::chrono::milliseconds>(totalTime).count() << "ms." << std::endl; // return distributionToNewBlocks.size(); // } template class BisimulationDecomposition2<double>; } }