You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
778 lines
28 KiB
778 lines
28 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_QUATERNION_H
|
|
#define EIGEN_QUATERNION_H
|
|
namespace Eigen {
|
|
|
|
|
|
/***************************************************************************
|
|
* Definition of QuaternionBase<Derived>
|
|
* The implementation is at the end of the file
|
|
***************************************************************************/
|
|
|
|
namespace internal {
|
|
template<typename Other,
|
|
int OtherRows=Other::RowsAtCompileTime,
|
|
int OtherCols=Other::ColsAtCompileTime>
|
|
struct quaternionbase_assign_impl;
|
|
}
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
* \class QuaternionBase
|
|
* \brief Base class for quaternion expressions
|
|
* \tparam Derived derived type (CRTP)
|
|
* \sa class Quaternion
|
|
*/
|
|
template<class Derived>
|
|
class QuaternionBase : public RotationBase<Derived, 3>
|
|
{
|
|
typedef RotationBase<Derived, 3> Base;
|
|
public:
|
|
using Base::operator*;
|
|
using Base::derived;
|
|
|
|
typedef typename internal::traits<Derived>::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename internal::traits<Derived>::Coefficients Coefficients;
|
|
enum {
|
|
Flags = Eigen::internal::traits<Derived>::Flags
|
|
};
|
|
|
|
// typedef typename Matrix<Scalar,4,1> Coefficients;
|
|
/** the type of a 3D vector */
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
/** the equivalent rotation matrix type */
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
/** the equivalent angle-axis type */
|
|
typedef AngleAxis<Scalar> AngleAxisType;
|
|
|
|
|
|
|
|
/** \returns the \c x coefficient */
|
|
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
|
|
/** \returns the \c y coefficient */
|
|
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
|
|
/** \returns the \c z coefficient */
|
|
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
|
|
/** \returns the \c w coefficient */
|
|
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
|
|
|
|
/** \returns a reference to the \c x coefficient */
|
|
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
|
|
/** \returns a reference to the \c y coefficient */
|
|
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
|
|
/** \returns a reference to the \c z coefficient */
|
|
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
|
|
/** \returns a reference to the \c w coefficient */
|
|
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
|
|
|
|
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
|
inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
|
|
|
|
/** \returns a vector expression of the imaginary part (x,y,z) */
|
|
inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
|
|
|
|
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
|
inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
|
|
|
|
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
|
inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
|
|
|
|
EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
|
|
template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
|
|
|
|
// disabled this copy operator as it is giving very strange compilation errors when compiling
|
|
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
|
|
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
|
|
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
|
|
// Derived& operator=(const QuaternionBase& other)
|
|
// { return operator=<Derived>(other); }
|
|
|
|
Derived& operator=(const AngleAxisType& aa);
|
|
template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
|
|
|
|
/** \returns a quaternion representing an identity rotation
|
|
* \sa MatrixBase::Identity()
|
|
*/
|
|
static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
|
|
|
|
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
|
|
*/
|
|
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
|
|
|
|
/** \returns the squared norm of the quaternion's coefficients
|
|
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
|
|
*/
|
|
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
|
|
|
|
/** \returns the norm of the quaternion's coefficients
|
|
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
|
|
*/
|
|
inline Scalar norm() const { return coeffs().norm(); }
|
|
|
|
/** Normalizes the quaternion \c *this
|
|
* \sa normalized(), MatrixBase::normalize() */
|
|
inline void normalize() { coeffs().normalize(); }
|
|
/** \returns a normalized copy of \c *this
|
|
* \sa normalize(), MatrixBase::normalized() */
|
|
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
|
|
|
|
/** \returns the dot product of \c *this and \a other
|
|
* Geometrically speaking, the dot product of two unit quaternions
|
|
* corresponds to the cosine of half the angle between the two rotations.
|
|
* \sa angularDistance()
|
|
*/
|
|
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
|
|
|
|
template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
|
|
|
|
/** \returns an equivalent 3x3 rotation matrix */
|
|
Matrix3 toRotationMatrix() const;
|
|
|
|
/** \returns the quaternion which transform \a a into \a b through a rotation */
|
|
template<typename Derived1, typename Derived2>
|
|
Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
|
|
|
template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
|
|
template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
|
|
|
|
/** \returns the quaternion describing the inverse rotation */
|
|
Quaternion<Scalar> inverse() const;
|
|
|
|
/** \returns the conjugated quaternion */
|
|
Quaternion<Scalar> conjugate() const;
|
|
|
|
/** \returns an interpolation for a constant motion between \a other and \c *this
|
|
* \a t in [0;1]
|
|
* see http://en.wikipedia.org/wiki/Slerp
|
|
*/
|
|
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
|
|
|
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
|
* determined by \a prec.
|
|
*
|
|
* \sa MatrixBase::isApprox() */
|
|
template<class OtherDerived>
|
|
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
|
|
{ return coeffs().isApprox(other.coeffs(), prec); }
|
|
|
|
/** return the result vector of \a v through the rotation*/
|
|
EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
|
|
|
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
|
*
|
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
|
* then this function smartly returns a const reference to \c *this.
|
|
*/
|
|
template<typename NewScalarType>
|
|
inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
|
|
{
|
|
return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
|
|
}
|
|
|
|
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
|
|
# include EIGEN_QUATERNIONBASE_PLUGIN
|
|
#endif
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Definition/implementation of Quaternion<Scalar>
|
|
***************************************************************************/
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Quaternion
|
|
*
|
|
* \brief The quaternion class used to represent 3D orientations and rotations
|
|
*
|
|
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
|
*
|
|
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
|
|
* orientations and rotations of objects in three dimensions. Compared to other representations
|
|
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
|
|
* \li \b compact storage (4 scalars)
|
|
* \li \b efficient to compose (28 flops),
|
|
* \li \b stable spherical interpolation
|
|
*
|
|
* The following two typedefs are provided for convenience:
|
|
* \li \c Quaternionf for \c float
|
|
* \li \c Quaterniond for \c double
|
|
*
|
|
* \sa class AngleAxis, class Transform
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename _Scalar,int _Options>
|
|
struct traits<Quaternion<_Scalar,_Options> >
|
|
{
|
|
typedef Quaternion<_Scalar,_Options> PlainObject;
|
|
typedef _Scalar Scalar;
|
|
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
|
|
enum{
|
|
IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
|
|
Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
|
|
};
|
|
};
|
|
}
|
|
|
|
template<typename _Scalar, int _Options>
|
|
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
|
|
{
|
|
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
|
|
enum { IsAligned = internal::traits<Quaternion>::IsAligned };
|
|
|
|
public:
|
|
typedef _Scalar Scalar;
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
|
|
using Base::operator*=;
|
|
|
|
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
|
|
typedef typename Base::AngleAxisType AngleAxisType;
|
|
|
|
/** Default constructor leaving the quaternion uninitialized. */
|
|
inline Quaternion() {}
|
|
|
|
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
|
|
* its four coefficients \a w, \a x, \a y and \a z.
|
|
*
|
|
* \warning Note the order of the arguments: the real \a w coefficient first,
|
|
* while internally the coefficients are stored in the following order:
|
|
* [\c x, \c y, \c z, \c w]
|
|
*/
|
|
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
|
|
|
|
/** Constructs and initialize a quaternion from the array data */
|
|
inline Quaternion(const Scalar* data) : m_coeffs(data) {}
|
|
|
|
/** Copy constructor */
|
|
template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
|
|
|
|
/** Constructs and initializes a quaternion from the angle-axis \a aa */
|
|
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
|
|
|
|
/** Constructs and initializes a quaternion from either:
|
|
* - a rotation matrix expression,
|
|
* - a 4D vector expression representing quaternion coefficients.
|
|
*/
|
|
template<typename Derived>
|
|
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
|
|
|
|
/** Explicit copy constructor with scalar conversion */
|
|
template<typename OtherScalar, int OtherOptions>
|
|
explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
|
|
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
|
|
|
inline Coefficients& coeffs() { return m_coeffs;}
|
|
inline const Coefficients& coeffs() const { return m_coeffs;}
|
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
|
|
|
|
protected:
|
|
Coefficients m_coeffs;
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
static EIGEN_STRONG_INLINE void _check_template_params()
|
|
{
|
|
EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
|
|
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/** \ingroup Geometry_Module
|
|
* single precision quaternion type */
|
|
typedef Quaternion<float> Quaternionf;
|
|
/** \ingroup Geometry_Module
|
|
* double precision quaternion type */
|
|
typedef Quaternion<double> Quaterniond;
|
|
|
|
/***************************************************************************
|
|
* Specialization of Map<Quaternion<Scalar>>
|
|
***************************************************************************/
|
|
|
|
namespace internal {
|
|
template<typename _Scalar, int _Options>
|
|
struct traits<Map<Quaternion<_Scalar>, _Options> >:
|
|
traits<Quaternion<_Scalar, _Options> >
|
|
{
|
|
typedef _Scalar Scalar;
|
|
typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
|
|
|
|
typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
|
|
enum {
|
|
IsAligned = TraitsBase::IsAligned,
|
|
|
|
Flags = TraitsBase::Flags
|
|
};
|
|
};
|
|
}
|
|
|
|
namespace internal {
|
|
template<typename _Scalar, int _Options>
|
|
struct traits<Map<const Quaternion<_Scalar>, _Options> >:
|
|
traits<Quaternion<_Scalar> >
|
|
{
|
|
typedef _Scalar Scalar;
|
|
typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
|
|
|
|
typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
|
|
enum {
|
|
IsAligned = TraitsBase::IsAligned,
|
|
Flags = TraitsBase::Flags & ~LvalueBit
|
|
};
|
|
};
|
|
}
|
|
|
|
/** \brief Quaternion expression mapping a constant memory buffer
|
|
*
|
|
* \param _Scalar the type of the Quaternion coefficients
|
|
* \param _Options see class Map
|
|
*
|
|
* This is a specialization of class Map for Quaternion. This class allows to view
|
|
* a 4 scalar memory buffer as an Eigen's Quaternion object.
|
|
*
|
|
* \sa class Map, class Quaternion, class QuaternionBase
|
|
*/
|
|
template<typename _Scalar, int _Options>
|
|
class Map<const Quaternion<_Scalar>, _Options >
|
|
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
|
|
{
|
|
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
|
|
|
|
public:
|
|
typedef _Scalar Scalar;
|
|
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
|
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
|
using Base::operator*=;
|
|
|
|
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
|
*
|
|
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
|
* \code *coeffs == {x, y, z, w} \endcode
|
|
*
|
|
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
|
EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
|
|
|
|
inline const Coefficients& coeffs() const { return m_coeffs;}
|
|
|
|
protected:
|
|
const Coefficients m_coeffs;
|
|
};
|
|
|
|
/** \brief Expression of a quaternion from a memory buffer
|
|
*
|
|
* \param _Scalar the type of the Quaternion coefficients
|
|
* \param _Options see class Map
|
|
*
|
|
* This is a specialization of class Map for Quaternion. This class allows to view
|
|
* a 4 scalar memory buffer as an Eigen's Quaternion object.
|
|
*
|
|
* \sa class Map, class Quaternion, class QuaternionBase
|
|
*/
|
|
template<typename _Scalar, int _Options>
|
|
class Map<Quaternion<_Scalar>, _Options >
|
|
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
|
|
{
|
|
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
|
|
|
|
public:
|
|
typedef _Scalar Scalar;
|
|
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
|
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
|
using Base::operator*=;
|
|
|
|
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
|
*
|
|
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
|
* \code *coeffs == {x, y, z, w} \endcode
|
|
*
|
|
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
|
EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
|
|
|
|
inline Coefficients& coeffs() { return m_coeffs; }
|
|
inline const Coefficients& coeffs() const { return m_coeffs; }
|
|
|
|
protected:
|
|
Coefficients m_coeffs;
|
|
};
|
|
|
|
/** \ingroup Geometry_Module
|
|
* Map an unaligned array of single precision scalar as a quaternion */
|
|
typedef Map<Quaternion<float>, 0> QuaternionMapf;
|
|
/** \ingroup Geometry_Module
|
|
* Map an unaligned array of double precision scalar as a quaternion */
|
|
typedef Map<Quaternion<double>, 0> QuaternionMapd;
|
|
/** \ingroup Geometry_Module
|
|
* Map a 16-bits aligned array of double precision scalars as a quaternion */
|
|
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
|
|
/** \ingroup Geometry_Module
|
|
* Map a 16-bits aligned array of double precision scalars as a quaternion */
|
|
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
|
|
|
/***************************************************************************
|
|
* Implementation of QuaternionBase methods
|
|
***************************************************************************/
|
|
|
|
// Generic Quaternion * Quaternion product
|
|
// This product can be specialized for a given architecture via the Arch template argument.
|
|
namespace internal {
|
|
template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
|
|
{
|
|
static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
|
|
return Quaternion<Scalar>
|
|
(
|
|
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
|
|
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
|
|
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
|
|
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
|
|
);
|
|
}
|
|
};
|
|
}
|
|
|
|
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
|
|
template <class Derived>
|
|
template <class OtherDerived>
|
|
EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
|
|
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
|
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
|
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
|
|
typename internal::traits<Derived>::Scalar,
|
|
internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
|
|
}
|
|
|
|
/** \sa operator*(Quaternion) */
|
|
template <class Derived>
|
|
template <class OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
|
|
{
|
|
derived() = derived() * other.derived();
|
|
return derived();
|
|
}
|
|
|
|
/** Rotation of a vector by a quaternion.
|
|
* \remarks If the quaternion is used to rotate several points (>1)
|
|
* then it is much more efficient to first convert it to a 3x3 Matrix.
|
|
* Comparison of the operation cost for n transformations:
|
|
* - Quaternion2: 30n
|
|
* - Via a Matrix3: 24 + 15n
|
|
*/
|
|
template <class Derived>
|
|
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
|
|
QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
|
{
|
|
// Note that this algorithm comes from the optimization by hand
|
|
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
|
// It appears to be much faster than the common algorithm found
|
|
// in the litterature (30 versus 39 flops). It also requires two
|
|
// Vector3 as temporaries.
|
|
Vector3 uv = this->vec().cross(v);
|
|
uv += uv;
|
|
return v + this->w() * uv + this->vec().cross(uv);
|
|
}
|
|
|
|
template<class Derived>
|
|
EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
|
|
{
|
|
coeffs() = other.coeffs();
|
|
return derived();
|
|
}
|
|
|
|
template<class Derived>
|
|
template<class OtherDerived>
|
|
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
|
|
{
|
|
coeffs() = other.coeffs();
|
|
return derived();
|
|
}
|
|
|
|
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
|
|
*/
|
|
template<class Derived>
|
|
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
|
|
{
|
|
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
|
|
this->w() = internal::cos(ha);
|
|
this->vec() = internal::sin(ha) * aa.axis();
|
|
return derived();
|
|
}
|
|
|
|
/** Set \c *this from the expression \a xpr:
|
|
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
|
|
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
|
|
* and \a xpr is converted to a quaternion
|
|
*/
|
|
|
|
template<class Derived>
|
|
template<class MatrixDerived>
|
|
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
|
|
{
|
|
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
|
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
|
internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
|
|
return derived();
|
|
}
|
|
|
|
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
|
|
* be normalized, otherwise the result is undefined.
|
|
*/
|
|
template<class Derived>
|
|
inline typename QuaternionBase<Derived>::Matrix3
|
|
QuaternionBase<Derived>::toRotationMatrix(void) const
|
|
{
|
|
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
|
|
// if not inlined then the cost of the return by value is huge ~ +35%,
|
|
// however, not inlining this function is an order of magnitude slower, so
|
|
// it has to be inlined, and so the return by value is not an issue
|
|
Matrix3 res;
|
|
|
|
const Scalar tx = Scalar(2)*this->x();
|
|
const Scalar ty = Scalar(2)*this->y();
|
|
const Scalar tz = Scalar(2)*this->z();
|
|
const Scalar twx = tx*this->w();
|
|
const Scalar twy = ty*this->w();
|
|
const Scalar twz = tz*this->w();
|
|
const Scalar txx = tx*this->x();
|
|
const Scalar txy = ty*this->x();
|
|
const Scalar txz = tz*this->x();
|
|
const Scalar tyy = ty*this->y();
|
|
const Scalar tyz = tz*this->y();
|
|
const Scalar tzz = tz*this->z();
|
|
|
|
res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
|
|
res.coeffRef(0,1) = txy-twz;
|
|
res.coeffRef(0,2) = txz+twy;
|
|
res.coeffRef(1,0) = txy+twz;
|
|
res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
|
|
res.coeffRef(1,2) = tyz-twx;
|
|
res.coeffRef(2,0) = txz-twy;
|
|
res.coeffRef(2,1) = tyz+twx;
|
|
res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
|
|
|
|
return res;
|
|
}
|
|
|
|
/** Sets \c *this to be a quaternion representing a rotation between
|
|
* the two arbitrary vectors \a a and \a b. In other words, the built
|
|
* rotation represent a rotation sending the line of direction \a a
|
|
* to the line of direction \a b, both lines passing through the origin.
|
|
*
|
|
* \returns a reference to \c *this.
|
|
*
|
|
* Note that the two input vectors do \b not have to be normalized, and
|
|
* do not need to have the same norm.
|
|
*/
|
|
template<class Derived>
|
|
template<typename Derived1, typename Derived2>
|
|
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
|
{
|
|
using std::max;
|
|
Vector3 v0 = a.normalized();
|
|
Vector3 v1 = b.normalized();
|
|
Scalar c = v1.dot(v0);
|
|
|
|
// if dot == -1, vectors are nearly opposites
|
|
// => accuraletly compute the rotation axis by computing the
|
|
// intersection of the two planes. This is done by solving:
|
|
// x^T v0 = 0
|
|
// x^T v1 = 0
|
|
// under the constraint:
|
|
// ||x|| = 1
|
|
// which yields a singular value problem
|
|
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
|
|
{
|
|
c = max<Scalar>(c,-1);
|
|
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
|
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
|
Vector3 axis = svd.matrixV().col(2);
|
|
|
|
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
|
|
this->w() = internal::sqrt(w2);
|
|
this->vec() = axis * internal::sqrt(Scalar(1) - w2);
|
|
return derived();
|
|
}
|
|
Vector3 axis = v0.cross(v1);
|
|
Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
|
|
Scalar invs = Scalar(1)/s;
|
|
this->vec() = axis * invs;
|
|
this->w() = s * Scalar(0.5);
|
|
|
|
return derived();
|
|
}
|
|
|
|
|
|
/** Returns a quaternion representing a rotation between
|
|
* the two arbitrary vectors \a a and \a b. In other words, the built
|
|
* rotation represent a rotation sending the line of direction \a a
|
|
* to the line of direction \a b, both lines passing through the origin.
|
|
*
|
|
* \returns resulting quaternion
|
|
*
|
|
* Note that the two input vectors do \b not have to be normalized, and
|
|
* do not need to have the same norm.
|
|
*/
|
|
template<typename Scalar, int Options>
|
|
template<typename Derived1, typename Derived2>
|
|
Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
|
{
|
|
Quaternion quat;
|
|
quat.setFromTwoVectors(a, b);
|
|
return quat;
|
|
}
|
|
|
|
|
|
/** \returns the multiplicative inverse of \c *this
|
|
* Note that in most cases, i.e., if you simply want the opposite rotation,
|
|
* and/or the quaternion is normalized, then it is enough to use the conjugate.
|
|
*
|
|
* \sa QuaternionBase::conjugate()
|
|
*/
|
|
template <class Derived>
|
|
inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
|
|
{
|
|
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
|
Scalar n2 = this->squaredNorm();
|
|
if (n2 > 0)
|
|
return Quaternion<Scalar>(conjugate().coeffs() / n2);
|
|
else
|
|
{
|
|
// return an invalid result to flag the error
|
|
return Quaternion<Scalar>(Coefficients::Zero());
|
|
}
|
|
}
|
|
|
|
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
|
|
* if the quaternion is normalized.
|
|
* The conjugate of a quaternion represents the opposite rotation.
|
|
*
|
|
* \sa Quaternion2::inverse()
|
|
*/
|
|
template <class Derived>
|
|
inline Quaternion<typename internal::traits<Derived>::Scalar>
|
|
QuaternionBase<Derived>::conjugate() const
|
|
{
|
|
return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
|
|
}
|
|
|
|
/** \returns the angle (in radian) between two rotations
|
|
* \sa dot()
|
|
*/
|
|
template <class Derived>
|
|
template <class OtherDerived>
|
|
inline typename internal::traits<Derived>::Scalar
|
|
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
|
{
|
|
using std::acos;
|
|
double d = internal::abs(this->dot(other));
|
|
if (d>=1.0)
|
|
return Scalar(0);
|
|
return static_cast<Scalar>(2 * acos(d));
|
|
}
|
|
|
|
/** \returns the spherical linear interpolation between the two quaternions
|
|
* \c *this and \a other at the parameter \a t
|
|
*/
|
|
template <class Derived>
|
|
template <class OtherDerived>
|
|
Quaternion<typename internal::traits<Derived>::Scalar>
|
|
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
|
|
{
|
|
using std::acos;
|
|
static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
|
|
Scalar d = this->dot(other);
|
|
Scalar absD = internal::abs(d);
|
|
|
|
Scalar scale0;
|
|
Scalar scale1;
|
|
|
|
if(absD>=one)
|
|
{
|
|
scale0 = Scalar(1) - t;
|
|
scale1 = t;
|
|
}
|
|
else
|
|
{
|
|
// theta is the angle between the 2 quaternions
|
|
Scalar theta = acos(absD);
|
|
Scalar sinTheta = internal::sin(theta);
|
|
|
|
scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
|
scale1 = internal::sin( ( t * theta) ) / sinTheta;
|
|
}
|
|
if(d<0) scale1 = -scale1;
|
|
|
|
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// set from a rotation matrix
|
|
template<typename Other>
|
|
struct quaternionbase_assign_impl<Other,3,3>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
typedef DenseIndex Index;
|
|
template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
|
|
{
|
|
// This algorithm comes from "Quaternion Calculus and Fast Animation",
|
|
// Ken Shoemake, 1987 SIGGRAPH course notes
|
|
Scalar t = mat.trace();
|
|
if (t > Scalar(0))
|
|
{
|
|
t = sqrt(t + Scalar(1.0));
|
|
q.w() = Scalar(0.5)*t;
|
|
t = Scalar(0.5)/t;
|
|
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
|
|
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
|
|
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
|
|
}
|
|
else
|
|
{
|
|
DenseIndex i = 0;
|
|
if (mat.coeff(1,1) > mat.coeff(0,0))
|
|
i = 1;
|
|
if (mat.coeff(2,2) > mat.coeff(i,i))
|
|
i = 2;
|
|
DenseIndex j = (i+1)%3;
|
|
DenseIndex k = (j+1)%3;
|
|
|
|
t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
|
|
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
|
|
t = Scalar(0.5)/t;
|
|
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
|
|
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
|
|
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
|
|
}
|
|
}
|
|
};
|
|
|
|
// set from a vector of coefficients assumed to be a quaternion
|
|
template<typename Other>
|
|
struct quaternionbase_assign_impl<Other,4,1>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
|
|
{
|
|
q.coeffs() = vec;
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_QUATERNION_H
|