|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
namespace Eigen {
/***************************************************************************
* Definition of QuaternionBase<Derived> * The implementation is at the end of the file ***************************************************************************/
namespace internal { template<typename Other, int OtherRows=Other::RowsAtCompileTime, int OtherCols=Other::ColsAtCompileTime> struct quaternionbase_assign_impl; }
/** \geometry_module \ingroup Geometry_Module
* \class QuaternionBase * \brief Base class for quaternion expressions * \tparam Derived derived type (CRTP) * \sa class Quaternion */ template<class Derived> class QuaternionBase : public RotationBase<Derived, 3> { typedef RotationBase<Derived, 3> Base; public: using Base::operator*; using Base::derived;
typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename internal::traits<Derived>::Coefficients Coefficients; enum { Flags = Eigen::internal::traits<Derived>::Flags };
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */ typedef Matrix<Scalar,3,1> Vector3; /** the equivalent rotation matrix type */ typedef Matrix<Scalar,3,3> Matrix3; /** the equivalent angle-axis type */ typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */ inline Scalar x() const { return this->derived().coeffs().coeff(0); } /** \returns the \c y coefficient */ inline Scalar y() const { return this->derived().coeffs().coeff(1); } /** \returns the \c z coefficient */ inline Scalar z() const { return this->derived().coeffs().coeff(2); } /** \returns the \c w coefficient */ inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */ inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } /** \returns a reference to the \c y coefficient */ inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } /** \returns a reference to the \c z coefficient */ inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } /** \returns a reference to the \c w coefficient */ inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */ inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */ inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */ inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */ inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
Derived& operator=(const AngleAxisType& aa); template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity() */ static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/ inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm() */ inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm() */ inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */ inline void normalize() { coeffs().normalize(); } /** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */ inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions * corresponds to the cosine of half the angle between the two rotations. * \sa angularDistance() */ template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */ Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */ template<typename Derived1, typename Derived2> Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */ Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */ Quaternion<Scalar> conjugate() const;
/** \returns an interpolation for a constant motion between \a other and \c *this
* \a t in [0;1] * see http://en.wikipedia.org/wiki/Slerp
*/ template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec. * * \sa MatrixBase::isApprox() */ template<class OtherDerived> bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const { return coeffs().isApprox(other.coeffs(), prec); }
/** return the result vector of \a v through the rotation*/ EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
* * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const { return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); }
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
# include EIGEN_QUATERNIONBASE_PLUGIN
#endif
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar> ***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
* * \class Quaternion * * \brief The quaternion class used to represent 3D orientations and rotations * * \param _Scalar the scalar type, i.e., the type of the coefficients * * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of * orientations and rotations of objects in three dimensions. Compared to other representations * like Euler angles or 3x3 matrices, quatertions offer the following advantages: * \li \b compact storage (4 scalars) * \li \b efficient to compose (28 flops), * \li \b stable spherical interpolation * * The following two typedefs are provided for convenience: * \li \c Quaternionf for \c float * \li \c Quaterniond for \c double * * \sa class AngleAxis, class Transform */
namespace internal { template<typename _Scalar,int _Options> struct traits<Quaternion<_Scalar,_Options> > { typedef Quaternion<_Scalar,_Options> PlainObject; typedef _Scalar Scalar; typedef Matrix<_Scalar,4,1,_Options> Coefficients; enum{ IsAligned = internal::traits<Coefficients>::Flags & AlignedBit, Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit }; }; }
template<typename _Scalar, int _Options> class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > { typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; enum { IsAligned = internal::traits<Quaternion>::IsAligned };
public: typedef _Scalar Scalar;
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion) using Base::operator*=;
typedef typename internal::traits<Quaternion>::Coefficients Coefficients; typedef typename Base::AngleAxisType AngleAxisType;
/** Default constructor leaving the quaternion uninitialized. */ inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z. * * \warning Note the order of the arguments: the real \a w coefficient first, * while internally the coefficients are stored in the following order: * [\c x, \c y, \c z, \c w] */ inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
/** Constructs and initialize a quaternion from the array data */ inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */ template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
/** Constructs and initializes a quaternion from the angle-axis \a aa */ explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression, * - a 4D vector expression representing quaternion coefficients. */ template<typename Derived> explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Explicit copy constructor with scalar conversion */ template<typename OtherScalar, int OtherOptions> explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) { m_coeffs = other.coeffs().template cast<Scalar>(); }
template<typename Derived1, typename Derived2> static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
inline Coefficients& coeffs() { return m_coeffs;} inline const Coefficients& coeffs() const { return m_coeffs;}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
protected: Coefficients m_coeffs; #ifndef EIGEN_PARSED_BY_DOXYGEN
static EIGEN_STRONG_INLINE void _check_template_params() { EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) } #endif
};
/** \ingroup Geometry_Module
* single precision quaternion type */ typedef Quaternion<float> Quaternionf; /** \ingroup Geometry_Module
* double precision quaternion type */ typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>> ***************************************************************************/
namespace internal { template<typename _Scalar, int _Options> struct traits<Map<Quaternion<_Scalar>, _Options> >: traits<Quaternion<_Scalar, _Options> > { typedef _Scalar Scalar; typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef traits<Quaternion<_Scalar, _Options> > TraitsBase; enum { IsAligned = TraitsBase::IsAligned,
Flags = TraitsBase::Flags }; }; }
namespace internal { template<typename _Scalar, int _Options> struct traits<Map<const Quaternion<_Scalar>, _Options> >: traits<Quaternion<_Scalar> > { typedef _Scalar Scalar; typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef traits<Quaternion<_Scalar, _Options> > TraitsBase; enum { IsAligned = TraitsBase::IsAligned, Flags = TraitsBase::Flags & ~LvalueBit }; }; }
/** \brief Quaternion expression mapping a constant memory buffer
* * \param _Scalar the type of the Quaternion coefficients * \param _Options see class Map * * This is a specialization of class Map for Quaternion. This class allows to view * a 4 scalar memory buffer as an Eigen's Quaternion object. * * \sa class Map, class Quaternion, class QuaternionBase */ template<typename _Scalar, int _Options> class Map<const Quaternion<_Scalar>, _Options > : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > { typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
public: typedef _Scalar Scalar; typedef typename internal::traits<Map>::Coefficients Coefficients; EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
* * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: * \code *coeffs == {x, y, z, w} \endcode * * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline const Coefficients& coeffs() const { return m_coeffs;}
protected: const Coefficients m_coeffs; };
/** \brief Expression of a quaternion from a memory buffer
* * \param _Scalar the type of the Quaternion coefficients * \param _Options see class Map * * This is a specialization of class Map for Quaternion. This class allows to view * a 4 scalar memory buffer as an Eigen's Quaternion object. * * \sa class Map, class Quaternion, class QuaternionBase */ template<typename _Scalar, int _Options> class Map<Quaternion<_Scalar>, _Options > : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > { typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
public: typedef _Scalar Scalar; typedef typename internal::traits<Map>::Coefficients Coefficients; EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
* * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: * \code *coeffs == {x, y, z, w} \endcode * * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
inline Coefficients& coeffs() { return m_coeffs; } inline const Coefficients& coeffs() const { return m_coeffs; }
protected: Coefficients m_coeffs; };
/** \ingroup Geometry_Module
* Map an unaligned array of single precision scalar as a quaternion */ typedef Map<Quaternion<float>, 0> QuaternionMapf; /** \ingroup Geometry_Module
* Map an unaligned array of double precision scalar as a quaternion */ typedef Map<Quaternion<double>, 0> QuaternionMapd; /** \ingroup Geometry_Module
* Map a 16-bits aligned array of double precision scalars as a quaternion */ typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; /** \ingroup Geometry_Module
* Map a 16-bits aligned array of double precision scalars as a quaternion */ typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/***************************************************************************
* Implementation of QuaternionBase methods ***************************************************************************/
// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal { template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product { static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ return Quaternion<Scalar> ( a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() ); } }; }
/** \returns the concatenation of two rotations as a quaternion-quaternion product */ template <class Derived> template <class OtherDerived> EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) return internal::quat_product<Architecture::Target, Derived, OtherDerived, typename internal::traits<Derived>::Scalar, internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other); }
/** \sa operator*(Quaternion) */ template <class Derived> template <class OtherDerived> EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) { derived() = derived() * other.derived(); return derived(); }
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1) * then it is much more efficient to first convert it to a 3x3 Matrix. * Comparison of the operation cost for n transformations: * - Quaternion2: 30n * - Via a Matrix3: 24 + 15n */ template <class Derived> EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 QuaternionBase<Derived>::_transformVector(Vector3 v) const { // Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv = this->vec().cross(v); uv += uv; return v + this->w() * uv + this->vec().cross(uv); }
template<class Derived> EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) { coeffs() = other.coeffs(); return derived(); }
template<class Derived> template<class OtherDerived> EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) { coeffs() = other.coeffs(); return derived(); }
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/ template<class Derived> EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) { Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = internal::cos(ha); this->vec() = internal::sin(ha) * aa.axis(); return derived(); }
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix * and \a xpr is converted to a quaternion */
template<class Derived> template<class MatrixDerived> inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) { EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); return derived(); }
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
* be normalized, otherwise the result is undefined. */ template<class Derived> inline typename QuaternionBase<Derived>::Matrix3 QuaternionBase<Derived>::toRotationMatrix(void) const { // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
const Scalar tx = Scalar(2)*this->x(); const Scalar ty = Scalar(2)*this->y(); const Scalar tz = Scalar(2)*this->z(); const Scalar twx = tx*this->w(); const Scalar twy = ty*this->w(); const Scalar twz = tz*this->w(); const Scalar txx = tx*this->x(); const Scalar txy = ty*this->x(); const Scalar txz = tz*this->x(); const Scalar tyy = ty*this->y(); const Scalar tyz = tz*this->y(); const Scalar tzz = tz*this->z();
res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); res.coeffRef(0,1) = txy-twz; res.coeffRef(0,2) = txz+twy; res.coeffRef(1,0) = txy+twz; res.coeffRef(1,1) = Scalar(1)-(txx+tzz); res.coeffRef(1,2) = tyz-twx; res.coeffRef(2,0) = txz-twy; res.coeffRef(2,1) = tyz+twx; res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
return res; }
/** Sets \c *this to be a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built * rotation represent a rotation sending the line of direction \a a * to the line of direction \a b, both lines passing through the origin. * * \returns a reference to \c *this. * * Note that the two input vectors do \b not have to be normalized, and * do not need to have the same norm. */ template<class Derived> template<typename Derived1, typename Derived2> inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) { using std::max; Vector3 v0 = a.normalized(); Vector3 v1 = b.normalized(); Scalar c = v1.dot(v0);
// if dot == -1, vectors are nearly opposites
// => accuraletly compute the rotation axis by computing the
// intersection of the two planes. This is done by solving:
// x^T v0 = 0
// x^T v1 = 0
// under the constraint:
// ||x|| = 1
// which yields a singular value problem
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) { c = max<Scalar>(c,-1); Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); Vector3 axis = svd.matrixV().col(2);
Scalar w2 = (Scalar(1)+c)*Scalar(0.5); this->w() = internal::sqrt(w2); this->vec() = axis * internal::sqrt(Scalar(1) - w2); return derived(); } Vector3 axis = v0.cross(v1); Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2)); Scalar invs = Scalar(1)/s; this->vec() = axis * invs; this->w() = s * Scalar(0.5);
return derived(); }
/** Returns a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built * rotation represent a rotation sending the line of direction \a a * to the line of direction \a b, both lines passing through the origin. * * \returns resulting quaternion * * Note that the two input vectors do \b not have to be normalized, and * do not need to have the same norm. */ template<typename Scalar, int Options> template<typename Derived1, typename Derived2> Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) { Quaternion quat; quat.setFromTwoVectors(a, b); return quat; }
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation, * and/or the quaternion is normalized, then it is enough to use the conjugate. * * \sa QuaternionBase::conjugate() */ template <class Derived> inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const { // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm(); if (n2 > 0) return Quaternion<Scalar>(conjugate().coeffs() / n2); else { // return an invalid result to flag the error
return Quaternion<Scalar>(Coefficients::Zero()); } }
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized. * The conjugate of a quaternion represents the opposite rotation. * * \sa Quaternion2::inverse() */ template <class Derived> inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::conjugate() const { return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z()); }
/** \returns the angle (in radian) between two rotations
* \sa dot() */ template <class Derived> template <class OtherDerived> inline typename internal::traits<Derived>::Scalar QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const { using std::acos; double d = internal::abs(this->dot(other)); if (d>=1.0) return Scalar(0); return static_cast<Scalar>(2 * acos(d)); }
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t */ template <class Derived> template <class OtherDerived> Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const { using std::acos; static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); Scalar d = this->dot(other); Scalar absD = internal::abs(d);
Scalar scale0; Scalar scale1;
if(absD>=one) { scale0 = Scalar(1) - t; scale1 = t; } else { // theta is the angle between the 2 quaternions
Scalar theta = acos(absD); Scalar sinTheta = internal::sin(theta);
scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; scale1 = internal::sin( ( t * theta) ) / sinTheta; } if(d<0) scale1 = -scale1;
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); }
namespace internal {
// set from a rotation matrix
template<typename Other> struct quaternionbase_assign_impl<Other,3,3> { typedef typename Other::Scalar Scalar; typedef DenseIndex Index; template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat) { // This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace(); if (t > Scalar(0)) { t = sqrt(t + Scalar(1.0)); q.w() = Scalar(0.5)*t; t = Scalar(0.5)/t; q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; } else { DenseIndex i = 0; if (mat.coeff(1,1) > mat.coeff(0,0)) i = 1; if (mat.coeff(2,2) > mat.coeff(i,i)) i = 2; DenseIndex j = (i+1)%3; DenseIndex k = (j+1)%3;
t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); q.coeffs().coeffRef(i) = Scalar(0.5) * t; t = Scalar(0.5)/t; q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; } } };
// set from a vector of coefficients assumed to be a quaternion
template<typename Other> struct quaternionbase_assign_impl<Other,4,1> { typedef typename Other::Scalar Scalar; template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec) { q.coeffs() = vec; } };
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_QUATERNION_H
|