|
@ -550,12 +550,16 @@ namespace storm { |
|
|
auto matrix = model->getTransitionMatrix(); |
|
|
auto matrix = model->getTransitionMatrix(); |
|
|
std::set<typename utility::parametric::VariableType<ValueType>::type> variables = storm::models::sparse::getProbabilityParameters(*model); |
|
|
std::set<typename utility::parametric::VariableType<ValueType>::type> variables = storm::models::sparse::getProbabilityParameters(*model); |
|
|
|
|
|
|
|
|
|
|
|
// For each of the variables create a model in which we only change the value for this specific variable
|
|
|
for (auto itr = variables.begin(); itr != variables.end(); ++itr) { |
|
|
for (auto itr = variables.begin(); itr != variables.end(); ++itr) { |
|
|
double previous = -1; |
|
|
double previous = -1; |
|
|
bool monDecr = true; |
|
|
bool monDecr = true; |
|
|
bool monIncr = true; |
|
|
bool monIncr = true; |
|
|
|
|
|
|
|
|
|
|
|
// Check monotonicity in variable (*itr) by instantiating the model
|
|
|
|
|
|
// all other variables fixed on lb, only increasing (*itr)
|
|
|
for (auto i = 0; (monDecr || monIncr) && i < numberOfSamples; ++i) { |
|
|
for (auto i = 0; (monDecr || monIncr) && i < numberOfSamples; ++i) { |
|
|
|
|
|
// Create valuation
|
|
|
auto valuation = storm::utility::parametric::Valuation<ValueType>(); |
|
|
auto valuation = storm::utility::parametric::Valuation<ValueType>(); |
|
|
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) { |
|
|
for (auto itr2 = variables.begin(); itr2 != variables.end(); ++itr2) { |
|
|
// Only change value for current variable
|
|
|
// Only change value for current variable
|
|
@ -563,19 +567,14 @@ namespace storm { |
|
|
auto lb = region.getLowerBoundary(itr->name()); |
|
|
auto lb = region.getLowerBoundary(itr->name()); |
|
|
auto ub = region.getUpperBoundary(itr->name()); |
|
|
auto ub = region.getUpperBoundary(itr->name()); |
|
|
// Creates samples between lb and ub, that is: lb, lb + (ub-lb)/(#samples -1), lb + 2* (ub-lb)/(#samples -1), ..., ub
|
|
|
// Creates samples between lb and ub, that is: lb, lb + (ub-lb)/(#samples -1), lb + 2* (ub-lb)/(#samples -1), ..., ub
|
|
|
auto val = |
|
|
|
|
|
std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type> |
|
|
|
|
|
(*itr,utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(lb + i*(ub-lb)/(numberOfSamples-1))); |
|
|
|
|
|
valuation.insert(val); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valuation[*itr2] = utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(lb + i*(ub-lb)/(numberOfSamples-1)); |
|
|
} else { |
|
|
} else { |
|
|
auto lb = region.getLowerBoundary(itr->name()); |
|
|
auto lb = region.getLowerBoundary(itr->name()); |
|
|
auto val = |
|
|
|
|
|
std::pair<typename utility::parametric::VariableType<ValueType>::type, typename utility::parametric::CoefficientType<ValueType>::type> |
|
|
|
|
|
(*itr,utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(lb)); |
|
|
|
|
|
valuation.insert(val); |
|
|
|
|
|
|
|
|
valuation[*itr2] = utility::convertNumber<typename utility::parametric::CoefficientType<ValueType>::type>(lb); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Instantiate model and get result
|
|
|
storm::models::sparse::Dtmc<double> sampleModel = instantiator.instantiate(valuation); |
|
|
storm::models::sparse::Dtmc<double> sampleModel = instantiator.instantiate(valuation); |
|
|
auto checker = storm::modelchecker::SparseDtmcPrctlModelChecker<storm::models::sparse::Dtmc<double>>(sampleModel); |
|
|
auto checker = storm::modelchecker::SparseDtmcPrctlModelChecker<storm::models::sparse::Dtmc<double>>(sampleModel); |
|
|
std::unique_ptr<storm::modelchecker::CheckResult> checkResult; |
|
|
std::unique_ptr<storm::modelchecker::CheckResult> checkResult; |
|
@ -598,9 +597,11 @@ namespace storm { |
|
|
std::vector<double> values = quantitativeResult.getValueVector(); |
|
|
std::vector<double> values = quantitativeResult.getValueVector(); |
|
|
auto initialStates = model->getInitialStates(); |
|
|
auto initialStates = model->getInitialStates(); |
|
|
double initial = 0; |
|
|
double initial = 0; |
|
|
|
|
|
// Get total probability from initial states
|
|
|
for (auto j = initialStates.getNextSetIndex(0); j < model->getNumberOfStates(); j = initialStates.getNextSetIndex(j+1)) { |
|
|
for (auto j = initialStates.getNextSetIndex(0); j < model->getNumberOfStates(); j = initialStates.getNextSetIndex(j+1)) { |
|
|
initial += values[j]; |
|
|
initial += values[j]; |
|
|
} |
|
|
} |
|
|
|
|
|
// Calculate difference with result for previous valuation
|
|
|
assert (initial >= 0-precision && initial <= 1+precision); |
|
|
assert (initial >= 0-precision && initial <= 1+precision); |
|
|
double diff = previous - initial; |
|
|
double diff = previous - initial; |
|
|
assert (previous == -1 || diff >= -1-precision && diff <= 1 + precision); |
|
|
assert (previous == -1 || diff >= -1-precision && diff <= 1 + precision); |
|
|