Browse Source

examples and small fix regarding changes of elimination model checker

Former-commit-id: 2cc4247372
tempestpy_adaptions
TimQu 9 years ago
parent
commit
f86c4f65f7
  1. 176
      examples/pmdp/firewire/firewire.nm
  2. 4
      examples/pmdp/firewire/firewire.prop
  3. 258
      examples/pmdp/zeroconf/zeroconf.nm
  4. 2
      examples/pmdp/zeroconf/zeroconf.prop
  5. 9
      src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h
  6. 12
      src/modelchecker/region/SparseDtmcRegionModelChecker.cpp

176
examples/pmdp/firewire/firewire.nm

@ -0,0 +1,176 @@
// firewire protocol with integer semantics
// dxp/gxn 14/06/01
// CLOCKS
// x1 (x2) clock for node1 (node2)
// y1 and y2 (z1 and z2) clocks for wire12 (wire21)
mdp
// maximum and minimum delays
// fast
const int rc_fast_max = 85;
const int rc_fast_min = 76;
// slow
const int rc_slow_max = 167;
const int rc_slow_min = 159;
// delay caused by the wire length
const int delay;
// probability of choosing fast
const double fast1; // = 0.5;
const double slow1=1-fast1;
const double fast2; // = 0.5;
const double slow2=1-fast2;
module wire12
// local state
w12 : [0..9];
// 0 - empty
// 1 - rec_req
// 2 - rec_req_ack
// 3 - rec_ack
// 4 - rec_ack_idle
// 5 - rec_idle
// 6 - rec_idle_req
// 7 - rec_ack_req
// 8 - rec_req_idle
// 9 - rec_idle_ack
// clock for wire12
y1 : [0..delay+1];
y2 : [0..delay+1];
// empty
// do not need y1 and y2 to increase as always reset when this state is left
// similarly can reset y1 and y2 when we re-enter this state
[snd_req12] w12=0 -> (w12'=1) & (y1'=0) & (y2'=0);
[snd_ack12] w12=0 -> (w12'=3) & (y1'=0) & (y2'=0);
[snd_idle12] w12=0 -> (w12'=5) & (y1'=0) & (y2'=0);
[time] w12=0 -> (w12'=w12);
// rec_req
[snd_req12] w12=1 -> (w12'=1);
[rec_req12] w12=1 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_ack12] w12=1 -> (w12'=2) & (y2'=0);
[snd_idle12] w12=1 -> (w12'=8) & (y2'=0);
[time] w12=1 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_ack
[snd_ack12] w12=2 -> (w12'=2);
[rec_req12] w12=2 -> (w12'=3);
[time] w12=2 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack
[snd_ack12] w12=3 -> (w12'=3);
[rec_ack12] w12=3 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_idle12] w12=3 -> (w12'=4) & (y2'=0);
[snd_req12] w12=3 -> (w12'=7) & (y2'=0);
[time] w12=3 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_idle
[snd_idle12] w12=4 -> (w12'=4);
[rec_ack12] w12=4 -> (w12'=5);
[time] w12=4 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle
[snd_idle12] w12=5 -> (w12'=5);
[rec_idle12] w12=5 -> (w12'=0) & (y1'=0) & (y2'=0);
[snd_req12] w12=5 -> (w12'=6) & (y2'=0);
[snd_ack12] w12=5 -> (w12'=9) & (y2'=0);
[time] w12=5 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_req
[snd_req12] w12=6 -> (w12'=6);
[rec_idle12] w12=6 -> (w12'=1);
[time] w12=6 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_ack_req
[snd_req12] w12=7 -> (w12'=7);
[rec_ack12] w12=7 -> (w12'=1);
[time] w12=7 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_req_idle
[snd_idle12] w12=8 -> (w12'=8);
[rec_req12] w12=8 -> (w12'=5);
[time] w12=8 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
// rec_idle_ack
[snd_ack12] w12=9 -> (w12'=9);
[rec_idle12] w12=9 -> (w12'=3);
[time] w12=9 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1));
endmodule
module node1
// clock for node1
x1 : [0..168];
// local state
s1 : [0..8];
// 0 - root contention
// 1 - rec_idle
// 2 - rec_req_fast
// 3 - rec_req_slow
// 4 - rec_idle_fast
// 5 - rec_idle_slow
// 6 - snd_req
// 7- almost_root
// 8 - almost_child
// added resets to x1 when not considered again until after rest
// removed root and child (using almost root and almost child)
// root contention immediate state)
[snd_idle12] s1=0 -> fast1 : (s1'=2) & (x1'=0) + slow1 : (s1'=3) & (x1'=0);
[rec_idle21] s1=0 -> (s1'=1);
// rec_idle immediate state)
[snd_idle12] s1=1 -> fast1 : (s1'=4) & (x1'=0) + slow1 : (s1'=5) & (x1'=0);
[rec_req21] s1=1 -> (s1'=0);
// rec_req_fast
[rec_idle21] s1=2 -> (s1'=4);
[snd_ack12] s1=2 & x1>=rc_fast_min -> (s1'=7) & (x1'=0);
[time] s1=2 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_req_slow
[rec_idle21] s1=3 -> (s1'=5);
[snd_ack12] s1=3 & x1>=rc_slow_min -> (s1'=7) & (x1'=0);
[time] s1=3 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// rec_idle_fast
[rec_req21] s1=4 -> (s1'=2);
[snd_req12] s1=4 & x1>=rc_fast_min -> (s1'=6) & (x1'=0);
[time] s1=4 & x1<rc_fast_max -> (x1'=min(x1+1,168));
// rec_idle_slow
[rec_req21] s1=5 -> (s1'=3);
[snd_req12] s1=5 & x1>=rc_slow_min -> (s1'=6) & (x1'=0);
[time] s1=5 & x1<rc_slow_max -> (x1'=min(x1+1,168));
// snd_req
// do not use x1 until reset (in state 0 or in state 1) so do not need to increase x1
// also can set x1 to 0 upon entering this state
[rec_req21] s1=6 -> (s1'=0);
[rec_ack21] s1=6 -> (s1'=8);
[time] s1=6 -> (s1'=s1);
// almost root (immediate)
// loop in final states to remove deadlock
[] s1=7 & s2=8 -> (s1'=s1);
[] s1=8 & s2=7 -> (s1'=s1);
[time] s1=7 -> (s1'=s1);
[time] s1=8 -> (s1'=s1);
endmodule
// construct remaining automata through renaming
module wire21=wire12[w12=w21, y1=z1, y2=z2,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21,
rec_req12=rec_req21, rec_idle12=rec_idle21, rec_ack12=rec_ack21]
endmodule
module node2=node1[s1=s2, s2=s1, x1=x2, fast1=fast2, slow1=slow2,
rec_req21=rec_req12, rec_idle21=rec_idle12, rec_ack21=rec_ack12,
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21]
endmodule
// labels
label "done" = (s1=8 & s2=7) | (s1=7 & s2=8);
// reward structures
// time
rewards "time"
[time] true : 1;
endrewards
// time nodes sending
rewards "time_sending"
[time] (w12>0 | w21>0) : 1;
endrewards

4
examples/pmdp/firewire/firewire.prop

@ -0,0 +1,4 @@
Pmin=?[ F (s1=8 & s2=7) ]
//R{"time"}min=? [ F "done" ]
//R{"time"}max=? [ F "done" ]
//R{"time_sending"}max=? [ F "done" ]

258
examples/pmdp/zeroconf/zeroconf.nm

@ -0,0 +1,258 @@
// IPv4: PTA model with digitial clocks
// one concrete host attempting to choose an ip address
// when a number of (abstract) hosts have already got ip addresses
// gxn/dxp/jzs 02/05/03
// model is an mdp
mdp
// reset or noreset model
const bool reset=false;
//-------------------------------------------------------------
// we suppose that
// - the abstract hosts have already picked their addresses
// and always defend their addresses
// - the concrete host never picks the same ip address twice
// (this can happen only with a verys small probability)
// under these assumptions we do not need message types because:
// 1) since messages to the concrete host will never be a probe,
// this host will react to all messages in the same way
// 2) since the abstract hosts always defend their addresses,
// all messages from the host will get an arp reply if the ip matches
// following from the above assumptions we require only three abstract IP addresses
// (0,1 and 2) which correspond to the following sets of IP addresses:
// 0 - the IP addresses of the abstract hosts which the concrete host
// previously tried to configure
// 1 - an IP address of an abstract host which the concrete host is
// currently trying to configure
// 2 - a fresh IP address which the concrete host is currently trying to configure
// if the host picks an address that is being used it may end up picking another ip address
// in which case there may still be messages corresponding to the old ip address
// to be sent both from and to the host which the host should now disregard
// (since it will never pick the same ip address)
// to deal with this situation: when a host picks a new ip address we reconfigure the
// messages that are still be be sent or are being sent by changing the ip address to 0
// (an old ip address of the host)
// all the messages from the abstract hosts for the 'old' address (in fact the
// set of old addresses since it may have started again more than once)
// can arrive in any order since they are equivalent to the host - it ignores then all
// also the messages for the old and new address will come from different hosts
// (the ones with that ip address) which we model by allowing them to arrive in any order
// i.e. not neccessarily in the order they where sent
//-------------------------------------------------------------
//-------------------------------------------------------------
// VARIABLES
//const int N; // number of abstract hosts
const int K; // number of probes to send
const double loss; // probability of message loss
// PROBABILITIES
const double old; //=N/65024; // probability pick an ip address being used
const double new = (1-old); // probability pick a new ip address
// TIMING CONSTANTS
const int CONSEC = 2; // time interval between sending consecutive probles
const int TRANSTIME = 1; // upper bound on transmission time delay
const int LONGWAIT = 60; // minimum time delay after a high number of address collisions
const int DEFEND = 10;
const int TIME_MAX_X = 60; // max value of clock x
const int TIME_MAX_Y = 10; // max value of clock y
const int TIME_MAX_Z = 1; // max value of clock z
// OTHER CONSTANTS
const int MAXCOLL = 10; // maximum number of collisions before long wait
// size of buffers for other hosts
const int B0 = 20; // buffer size for one abstract host
const int B1 = 8; // buffer sizes for all abstract hosts
//-------------------------------------------------------------
// ENVIRONMENT - models: medium, output buffer of concrete host and all other hosts
module environment
// buffer of concrete host
b_ip7 : [0..2]; // ip address of message in buffer position 8
b_ip6 : [0..2]; // ip address of message in buffer position 7
b_ip5 : [0..2]; // ip address of message in buffer position 6
b_ip4 : [0..2]; // ip address of message in buffer position 5
b_ip3 : [0..2]; // ip address of message in buffer position 4
b_ip2 : [0..2]; // ip address of message in buffer position 3
b_ip1 : [0..2]; // ip address of message in buffer position 2
b_ip0 : [0..2]; // ip address of message in buffer position 1
n : [0..8]; // number of places in the buffer used (from host)
// messages to be sent from abstract hosts to concrete host
n0 : [0..B0]; // number of messages which do not have the host's current ip address
n1 : [0..B1]; // number of messages which have the host's current ip address
b : [0..2]; // local state
// 0 - idle
// 1 - sending message from concrete host
// 2 - sending message from abstract host
z : [0..1]; // clock of environment (needed for the time to send a message)
ip_mess : [0..2]; // ip in the current message being sent
// 0 - different from concrete host
// 1 - same as the concrete host and in use
// 2 - same as the concrete host and not in use
// RESET/RECONFIG: when host is about to choose new ip address
// suppose that the host cannot choose the same ip address
// (since happens with very small probability).
// Therefore all messages will have a different ip address,
// i.e. all n1 messages become n0 ones.
// Note this include any message currently being sent (ip is set to zero 0)
[reset] true -> (n1'=0) & (n0'=min(B0,n0+n1)) // abstract buffers
& (ip_mess'=0) // message being set
& (n'=(reset)?0:n) // concrete buffer (remove this update to get NO_RESET model)
& (b_ip7'=0)
& (b_ip6'=0)
& (b_ip5'=0)
& (b_ip4'=0)
& (b_ip3'=0)
& (b_ip2'=0)
& (b_ip1'=0)
& (b_ip0'=0);
// note: prevent anything else from happening when reconfiguration needs to take place
// time passage (only if no messages to send or sending a message)
[time] l>0 & b=0 & n=0 & n0=0 & n1=0 -> (b'=b); // cannot send a message
[time] l>0 & b>0 & z<1 -> (z'=min(z+1,TIME_MAX_Z)); // sending a message
// get messages to be sent (so message has same ip address as host)
[send] l>0 & n=0 -> (b_ip0'=ip) & (n'=n+1);
[send] l>0 & n=1 -> (b_ip1'=ip) & (n'=n+1);
[send] l>0 & n=2 -> (b_ip2'=ip) & (n'=n+1);
[send] l>0 & n=3 -> (b_ip3'=ip) & (n'=n+1);
[send] l>0 & n=4 -> (b_ip4'=ip) & (n'=n+1);
[send] l>0 & n=5 -> (b_ip5'=ip) & (n'=n+1);
[send] l>0 & n=6 -> (b_ip6'=ip) & (n'=n+1);
[send] l>0 & n=7 -> (b_ip7'=ip) & (n'=n+1);
[send] l>0 & n=8 -> (n'=n); // buffer full so lose message
// start sending message from host
[] l>0 & b=0 & n>0 -> (1-loss) : (b'=1) & (ip_mess'=b_ip0)
& (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1) // send message
+ loss : (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1); // lose message
// start sending message to host
[] l>0 & b=0 & n0>0 -> (1-loss) : (b'=2) & (ip_mess'=0) & (n0'=n0-1) + loss : (n0'=n0-1); // different ip
[] l>0 & b=0 & n1>0 -> (1-loss) : (b'=2) & (ip_mess'=1) & (n1'=n1-1) + loss : (n1'=n1-1); // same ip
// finish sending message from host
[] l>0 & b=1 & ip_mess=0 -> (b'=0) & (z'=0) & (n0'=min(n0+1,B0)) & (ip_mess'=0);
[] l>0 & b=1 & ip_mess=1 -> (b'=0) & (z'=0) & (n1'=min(n1+1,B1)) & (ip_mess'=0);
[] l>0 & b=1 & ip_mess=2 -> (b'=0) & (z'=0) & (ip_mess'=0);
// finish sending message to host
[rec] l>0 & b=2 -> (b'=0) & (z'=0) & (ip_mess'=0);
endmodule
//-------------------------------------------------------------
// CONCRETE HOST
module host0
x : [0..TIME_MAX_X]; // first clock of the host
y : [0..TIME_MAX_Y]; // second clock of the host
coll : [0..MAXCOLL]; // number of address collisions
probes : [0..K]; // counter (number of probes sent)
mess : [0..1]; // need to send a message or not
defend : [0..1]; // defend (if =1, try to defend IP address)
ip : [1..2]; // ip address (1 - in use & 2 - fresh)
l : [0..4] init 1; // location
// 0 : RECONFIGURE
// 1 : RANDOM
// 2 : WAITSP
// 3 : WAITSG
// 4 : USE
// RECONFIGURE
[reset] l=0 -> (l'=1);
// RANDOM (choose IP address)
[rec] (l=1) -> 1: true; // get message (ignore since have no ip address)
// small number of collisions (choose straight away)
[] l=1 & coll<MAXCOLL -> 1/3*old : (l'=2) & (ip'=1) & (x'=0)
+ 1/3*old : (l'=2) & (ip'=1) & (x'=1)
+ 1/3*old : (l'=2) & (ip'=1) & (x'=2)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=0)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=1)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=2);
// large number of collisions: (wait for LONGWAIT)
[time] l=1 & coll=MAXCOLL & x<LONGWAIT -> (x'=min(x+1,TIME_MAX_X));
[] l=1 & coll=MAXCOLL & x=LONGWAIT -> 1/3*old : (l'=2) & (ip'=1) & (x'=0)
+ 1/3*old : (l'=2) & (ip'=1) & (x'=1)
+ 1/3*old : (l'=2) & (ip'=1) & (x'=2)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=0)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=1)
+ 1/3*new : (l'=2) & (ip'=2) & (x'=2);
// WAITSP
// let time pass
[time] l=2 & x<2 -> (x'=min(x+1,2));
// send probe
[send] l=2 & x=2 & probes<K -> (x'=0) & (probes'=probes+1);
// sent K probes and waited 2 seconds
[] l=2 & x=2 & probes=K -> (l'=3) & (probes'=0) & (coll'=0) & (x'=0);
// get message and ip does not match: ignore
[rec] l=2 & ip_mess!=ip -> (l'=l);
// get a message with matching ip: reconfigure
[rec] l=2 & ip_mess=ip -> (l'=0) & (coll'=min(coll+1,MAXCOLL)) & (x'=0) & (probes'=0);
// WAITSG (sends two gratuitious arp probes)
// time passage
[time] l=3 & mess=0 & defend=0 & x<CONSEC -> (x'=min(x+1,TIME_MAX_X));
[time] l=3 & mess=0 & defend=1 & x<CONSEC -> (x'=min(x+1,TIME_MAX_X)) & (y'=min(y+1,DEFEND));
// receive message and same ip: defend
[rec] l=3 & mess=0 & ip_mess=ip & (defend=0 | y>=DEFEND) -> (defend'=1) & (mess'=1) & (y'=0);
// receive message and same ip: defer
[rec] l=3 & mess=0 & ip_mess=ip & (defend=0 | y<DEFEND) -> (l'=0) & (probes'=0) & (defend'=0) & (x'=0) & (y'=0);
// receive message and different ip
[rec] l=3 & mess=0 & ip_mess!=ip -> (l'=l);
// send probe reply or message for defence
[send] l=3 & mess=1 -> (mess'=0);
// send first gratuitous arp message
[send] l=3 & mess=0 & x=CONSEC & probes<1 -> (x'=0) & (probes'=probes+1);
// send second gratuitous arp message (move to use)
[send] l=3 & mess=0 & x=CONSEC & probes=1 -> (l'=4) & (x'=0) & (y'=0) & (probes'=0);
// USE (only interested in reaching this state so do not need to add anything here)
[] l=4 -> 1 : true;
endmodule

2
examples/pmdp/zeroconf/zeroconf.prop

@ -0,0 +1,2 @@
Pmin=? [ F (l=4 & ip=1) ]
Pmax=? [ F (l=4 & ip=1) ]

9
src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h

@ -9,8 +9,17 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
//forward declaration of friend class
namespace region {
template<typename ParametricModelType, typename ConstantType>
class SparseDtmcRegionModelChecker;
}
template<typename SparseDtmcModelType> template<typename SparseDtmcModelType>
class SparseDtmcEliminationModelChecker : public SparsePropositionalModelChecker<SparseDtmcModelType> { class SparseDtmcEliminationModelChecker : public SparsePropositionalModelChecker<SparseDtmcModelType> {
template<typename ParametricModelType, typename ConstantType> friend class storm::modelchecker::region::SparseDtmcRegionModelChecker;
public: public:
typedef typename SparseDtmcModelType::ValueType ValueType; typedef typename SparseDtmcModelType::ValueType ValueType;
typedef typename SparseDtmcModelType::RewardModelType RewardModelType; typedef typename SparseDtmcModelType::RewardModelType RewardModelType;

12
src/modelchecker/region/SparseDtmcRegionModelChecker.cpp

@ -402,16 +402,18 @@ namespace storm {
//now compute the functions using methods from elimination model checker //now compute the functions using methods from elimination model checker
storm::storage::BitVector newInitialStates = simpleModel.getInitialStates() % maybeStates; storm::storage::BitVector newInitialStates = simpleModel.getInitialStates() % maybeStates;
storm::storage::BitVector phiStates(simpleModel.getNumberOfStates(), true); storm::storage::BitVector phiStates(simpleModel.getNumberOfStates(), true);
boost::optional<std::vector<ParametricType>> stateRewards;
std::vector<ParametricType> values;
if(this->isComputeRewards()){ if(this->isComputeRewards()){
stateRewards = simpleModel.getUniqueRewardModel()->second.getTotalRewardVector(maybeStates.getNumberOfSetBits(), simpleModel.getTransitionMatrix(), maybeStates);
values = simpleModel.getUniqueRewardModel()->second.getTotalRewardVector(maybeStates.getNumberOfSetBits(), simpleModel.getTransitionMatrix(), maybeStates);
} else {
values = oneStepProbabilities;
} }
// storm::modelchecker::SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<ParametricType>> eliminationModelChecker(simpleModel); // storm::modelchecker::SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<ParametricType>> eliminationModelChecker(simpleModel);
// std::vector<std::size_t> statePriorities = eliminationModelChecker.getStatePriorities(forwardTransitions,backwardTransitions,newInitialStates,oneStepProbabilities); // std::vector<std::size_t> statePriorities = eliminationModelChecker.getStatePriorities(forwardTransitions,backwardTransitions,newInitialStates,oneStepProbabilities);
// this->reachabilityFunction=std::make_shared<ParametricType>(eliminationModelChecker.computeReachabilityValue(forwardTransitions, oneStepProbabilities, backwardTransitions, newInitialStates , true, phiStates, simpleModel.getStates("target"), stateRewards, statePriorities)); // this->reachabilityFunction=std::make_shared<ParametricType>(eliminationModelChecker.computeReachabilityValue(forwardTransitions, oneStepProbabilities, backwardTransitions, newInitialStates , true, phiStates, simpleModel.getStates("target"), stateRewards, statePriorities));
// std::vector<ParametricType> reachFuncVector = storm::modelchecker::SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<ParametricType>>::computeReachabilityValues(
// forwardTransitions, oneStepProbabilities, backwardTransitions, newInitialStates , true, phiStates, simpleModel.getStates("target"), oneStepProbabilities);
// this->reachabilityFunction=std::make_shared<ParametricType>(std::move(reachFuncVector[*newInitialStates.begin()]));
std::vector<ParametricType> reachFuncVector = storm::modelchecker::SparseDtmcEliminationModelChecker<storm::models::sparse::Dtmc<ParametricType>>::computeReachabilityValues(
forwardTransitions, values, backwardTransitions, newInitialStates , true, phiStates, simpleModel.getStates("target"), oneStepProbabilities);
this->reachabilityFunction=std::make_shared<ParametricType>(std::move(reachFuncVector[*simpleModel.getInitialStates().begin()]));
/* std::string funcStr = " (/ " + /* std::string funcStr = " (/ " +
this->reachabilityFunction->nominator().toString(false, true) + " " + this->reachabilityFunction->nominator().toString(false, true) + " " +
this->reachabilityFunction->denominator().toString(false, true) + this->reachabilityFunction->denominator().toString(false, true) +

Loading…
Cancel
Save