@ -43,339 +43,33 @@ public:
virtual ~ GmmxxMdpPrctlModelChecker ( ) { }
virtual std : : vector < Type > * checkBoundedUntil ( const storm : : formula : : BoundedUntil < Type > & formula , bool qualitative ) const {
/ / First , we need to compute the states that satisfy the sub - formulas of the until - formula .
storm : : storage : : BitVector * leftStates = formula . getLeft ( ) . check ( * this ) ;
storm : : storage : : BitVector * rightStates = formula . getRight ( ) . check ( * this ) ;
/ / Copy the matrix before we make any changes .
storm : : storage : : SparseMatrix < Type > tmpMatrix ( * this - > getModel ( ) . getTransitionMatrix ( ) ) ;
private :
virtual void performMatrixVectorMultiplication ( storm : : storage : : SparseMatrix < Type > const & matrix , std : : vector < Type > & vector , std : : vector < Type > * summand = nullptr , uint_fast64_t repetitions = 1 ) const {
/ / Get the starting row indices for the non - deterministic choices to reduce the resulting
/ / vector properly .
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
/ / Make all rows absorbing that violate both sub - formulas or satisfy the second sub - formula .
tmpMatrix . makeRowsAbsorbing ( ~ ( * leftStates | * rightStates ) | * rightStates , * nondeterministicChoiceIndices ) ;
/ / Transform the transition probability matrix to the gmm + + format to use its arithmetic .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( tmpMatrix ) ;
/ / Create the vector with which to multiply .
std : : vector < Type > * result = new std : : vector < Type > ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
storm : : utility : : setVectorValues ( result , * rightStates , storm : : utility : : constGetOne < Type > ( ) ) ;
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( matrix ) ;
/ / Create vector for result of multiplication , which is reduced to the result vector after
/ / each multiplication .
std : : vector < Type > * multiplyResult = new std : : vector < Type > ( this - > getModel ( ) . getTransitionMatrix ( ) - > getRowCount ( ) , 0 ) ;
std : : vector < Type > multiplyResult ( matrix . getRowCount ( ) ) ;
/ / Now perform matrix - vector multiplication as long as we meet the bound of the formula .
for ( uint_fast64_t i = 0 ; i < formula . getBound ( ) ; + + i ) {
gmm : : mult ( * gmmxxMatrix , * result , * multiplyResult ) ;
for ( uint_fast64_t i = 0 ; i < repetitions ; + + i ) {
gmm : : mult ( * gmmxxMatrix , vector , multiplyResult ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : reduceVectorMin ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
storm : : utility : : reduceVectorMin ( multiplyResult , & vector , * nondeterministicChoiceIndices ) ;
} else {
storm : : utility : : reduceVectorMax ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
storm : : utility : : reduceVectorMax ( multiplyResult , & vector , * nondeterministicChoiceIndices ) ;
}
}
delete multiplyResult ;
/ / Delete intermediate results and return result .
delete gmmxxMatrix ;
delete leftStates ;
delete rightStates ;
return result ;
}
virtual std : : vector < Type > * checkNext ( const storm : : formula : : Next < Type > & formula , bool qualitative ) const {
/ / First , we need to compute the states that satisfy the sub - formula of the next - formula .
storm : : storage : : BitVector * nextStates = formula . getChild ( ) . check ( * this ) ;
/ / Transform the transition probability matrix to the gmm + + format to use its arithmetic .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( * this - > getModel ( ) . getTransitionMatrix ( ) ) ;
/ / Create the vector with which to multiply and initialize it correctly .
std : : vector < Type > * result = new std : : vector < Type > ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
storm : : utility : : setVectorValues ( result , * nextStates , storm : : utility : : constGetOne < Type > ( ) ) ;
/ / Delete obsolete sub - result .
delete nextStates ;
/ / Create resulting vector .
std : : vector < Type > * temporaryResult = new std : : vector < Type > ( this - > getModel ( ) . getTransitionMatrix ( ) - > getRowCount ( ) ) ;
/ / Perform the actual computation , namely matrix - vector multiplication .
gmm : : mult ( * gmmxxMatrix , * result , * temporaryResult ) ;
/ / Get the starting row indices for the non - deterministic choices to reduce the resulting
/ / vector properly .
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : reduceVectorMin ( * temporaryResult , result , * nondeterministicChoiceIndices ) ;
} else {
storm : : utility : : reduceVectorMax ( * temporaryResult , result , * nondeterministicChoiceIndices ) ;
}
/ / Delete temporary matrix plus temporary result and return result .
delete gmmxxMatrix ;
delete temporaryResult ;
return result ;
}
virtual std : : vector < Type > * checkUntil ( const storm : : formula : : Until < Type > & formula , bool qualitative ) const {
/ / First , we need to compute the states that satisfy the sub - formulas of the until - formula .
storm : : storage : : BitVector * leftStates = formula . getLeft ( ) . check ( * this ) ;
storm : : storage : : BitVector * rightStates = formula . getRight ( ) . check ( * this ) ;
/ / Then , we need to identify the states which have to be taken out of the matrix , i . e .
/ / all states that have probability 0 and 1 of satisfying the until - formula .
storm : : storage : : BitVector statesWithProbability0 ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
storm : : storage : : BitVector statesWithProbability1 ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : GraphAnalyzer : : performProb01Min ( this - > getModel ( ) , * leftStates , * rightStates , & statesWithProbability0 , & statesWithProbability1 ) ;
} else {
storm : : utility : : GraphAnalyzer : : performProb01Max ( this - > getModel ( ) , * leftStates , * rightStates , & statesWithProbability0 , & statesWithProbability1 ) ;
}
/ / Delete sub - results that are obsolete now .
delete leftStates ;
delete rightStates ;
LOG4CPLUS_INFO ( logger , " Found " < < statesWithProbability0 . getNumberOfSetBits ( ) < < " 'no' states. " ) ;
LOG4CPLUS_INFO ( logger , " Found " < < statesWithProbability1 . getNumberOfSetBits ( ) < < " 'yes' states. " ) ;
storm : : storage : : BitVector maybeStates = ~ ( statesWithProbability0 | statesWithProbability1 ) ;
LOG4CPLUS_INFO ( logger , " Found " < < maybeStates . getNumberOfSetBits ( ) < < " 'maybe' states. " ) ;
/ / Create resulting vector .
std : : vector < Type > * result = new std : : vector < Type > ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
/ / Only try to solve system if there are states for which the probability is unknown .
uint_fast64_t maybeStatesSetBitCount = maybeStates . getNumberOfSetBits ( ) ;
if ( maybeStatesSetBitCount > 0 ) {
/ / First , we can eliminate the rows and columns from the original transition probability matrix for states
/ / whose probabilities are already known .
storm : : storage : : SparseMatrix < Type > * submatrix = this - > getModel ( ) . getTransitionMatrix ( ) - > getSubmatrix ( maybeStates , * this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ) ;
/ / Get the " new " nondeterministic choice indices for the submatrix .
std : : shared_ptr < std : : vector < uint_fast64_t > > subNondeterministicChoiceIndices = this - > computeNondeterministicChoiceIndicesForConstraint ( maybeStates ) ;
/ / Transform the submatrix to the gmm + + format to use its capabilities .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( * submatrix ) ;
/ / Create vector for results for maybe states .
std : : vector < Type > * x = new std : : vector < Type > ( maybeStatesSetBitCount ) ;
/ / Prepare the right - hand side of the equation system . For entry i this corresponds to
/ / the accumulated probability of going from state i to some ' yes ' state .
std : : vector < Type > b ( submatrix - > getRowCount ( ) ) ;
this - > getModel ( ) . getTransitionMatrix ( ) - > getConstrainedRowSumVector ( maybeStates , * this - > getModel ( ) . getNondeterministicChoiceIndices ( ) , statesWithProbability1 , & b ) ;
delete submatrix ;
/ / Solve the corresponding system of equations .
this - > solveEquationSystem ( * gmmxxMatrix , x , b , * subNondeterministicChoiceIndices ) ;
/ / Set values of resulting vector according to result .
storm : : utility : : setVectorValues < Type > ( result , maybeStates , * x ) ;
/ / Delete temporary matrix and vector .
delete gmmxxMatrix ;
delete x ;
}
/ / Set values of resulting vector that are known exactly .
storm : : utility : : setVectorValues < Type > ( result , statesWithProbability0 , storm : : utility : : constGetZero < Type > ( ) ) ;
storm : : utility : : setVectorValues < Type > ( result , statesWithProbability1 , storm : : utility : : constGetOne < Type > ( ) ) ;
return result ;
}
virtual std : : vector < Type > * checkInstantaneousReward ( const storm : : formula : : InstantaneousReward < Type > & formula , bool qualitative ) const {
/ / Only compute the result if the model has a state - based reward model .
if ( ! this - > getModel ( ) . hasStateRewards ( ) ) {
LOG4CPLUS_ERROR ( logger , " Missing (state-based) reward model for formula. " ) ;
throw storm : : exceptions : : InvalidPropertyException ( ) < < " Missing (state-based) reward model for formula. " ;
}
/ / Get the starting row indices for the non - deterministic choices to reduce the resulting
/ / vector properly .
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
/ / Transform the transition probability matrix to the gmm + + format to use its arithmetic .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( * this - > getModel ( ) . getTransitionMatrix ( ) ) ;
/ / Initialize result to state rewards of the model .
std : : vector < Type > * result = new std : : vector < Type > ( * this - > getModel ( ) . getStateRewardVector ( ) ) ;
/ / Create vector for result of multiplication , which is reduced to the result vector after
/ / each multiplication .
std : : vector < Type > * multiplyResult = new std : : vector < Type > ( this - > getModel ( ) . getTransitionMatrix ( ) - > getRowCount ( ) , 0 ) ;
/ / Now perform matrix - vector multiplication as long as we meet the bound of the formula .
for ( uint_fast64_t i = 0 ; i < formula . getBound ( ) ; + + i ) {
gmm : : mult ( * gmmxxMatrix , * result , * multiplyResult ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : reduceVectorMin ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
} else {
storm : : utility : : reduceVectorMax ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
}
}
delete multiplyResult ;
/ / Delete temporary variables and return result .
delete gmmxxMatrix ;
return result ;
}
virtual std : : vector < Type > * checkCumulativeReward ( const storm : : formula : : CumulativeReward < Type > & formula , bool qualitative ) const {
/ / Only compute the result if the model has at least one reward model .
if ( ! this - > getModel ( ) . hasStateRewards ( ) & & ! this - > getModel ( ) . hasTransitionRewards ( ) ) {
LOG4CPLUS_ERROR ( logger , " Missing reward model for formula. " ) ;
throw storm : : exceptions : : InvalidPropertyException ( ) < < " Missing reward model for formula. " ;
}
/ / Get the starting row indices for the non - deterministic choices to reduce the resulting
/ / vector properly .
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
/ / Transform the transition probability matrix to the gmm + + format to use its arithmetic .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( * this - > getModel ( ) . getTransitionMatrix ( ) ) ;
/ / Compute the reward vector to add in each step based on the available reward models .
std : : vector < Type > * totalRewardVector = nullptr ;
if ( this - > getModel ( ) . hasTransitionRewards ( ) ) {
totalRewardVector = this - > getModel ( ) . getTransitionMatrix ( ) - > getPointwiseProductRowSumVector ( * this - > getModel ( ) . getTransitionRewardMatrix ( ) ) ;
if ( this - > getModel ( ) . hasStateRewards ( ) ) {
gmm : : add ( * this - > getModel ( ) . getStateRewardVector ( ) , * totalRewardVector ) ;
}
} else {
totalRewardVector = new std : : vector < Type > ( * this - > getModel ( ) . getStateRewardVector ( ) ) ;
}
std : : vector < Type > * result = new std : : vector < Type > ( * this - > getModel ( ) . getStateRewardVector ( ) ) ;
/ / Create vector for result of multiplication , which is reduced to the result vector after
/ / each multiplication .
std : : vector < Type > * multiplyResult = new std : : vector < Type > ( this - > getModel ( ) . getTransitionMatrix ( ) - > getRowCount ( ) , 0 ) ;
/ / Now perform matrix - vector multiplication as long as we meet the bound of the formula .
for ( uint_fast64_t i = 0 ; i < formula . getBound ( ) ; + + i ) {
gmm : : mult ( * gmmxxMatrix , * result , * multiplyResult ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : reduceVectorMin ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
} else {
storm : : utility : : reduceVectorMax ( * multiplyResult , result , * nondeterministicChoiceIndices ) ;
}
/ / Add the reward vector to the result .
gmm : : add ( * totalRewardVector , * result ) ;
}
delete multiplyResult ;
/ / Delete temporary variables and return result .
delete gmmxxMatrix ;
delete totalRewardVector ;
return result ;
}
virtual std : : vector < Type > * checkReachabilityReward ( const storm : : formula : : ReachabilityReward < Type > & formula , bool qualitative ) const {
/ / Only compute the result if the model has at least one reward model .
if ( ! this - > getModel ( ) . hasStateRewards ( ) & & ! this - > getModel ( ) . hasTransitionRewards ( ) ) {
LOG4CPLUS_ERROR ( logger , " Missing reward model for formula. Skipping formula " ) ;
throw storm : : exceptions : : InvalidPropertyException ( ) < < " Missing reward model for formula. " ;
}
/ / Determine the states for which the target predicate holds .
storm : : storage : : BitVector * targetStates = formula . getChild ( ) . check ( * this ) ;
/ / Determine which states have a reward of infinity by definition .
storm : : storage : : BitVector infinityStates ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
storm : : storage : : BitVector trueStates ( this - > getModel ( ) . getNumberOfStates ( ) , true ) ;
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : GraphAnalyzer : : performProb1A ( this - > getModel ( ) , trueStates , * targetStates , & infinityStates ) ;
} else {
storm : : utility : : GraphAnalyzer : : performProb1E ( this - > getModel ( ) , trueStates , * targetStates , & infinityStates ) ;
}
infinityStates . complement ( ) ;
LOG4CPLUS_INFO ( logger , " Found " < < infinityStates . getNumberOfSetBits ( ) < < " 'infinity' states. " ) ;
LOG4CPLUS_INFO ( logger , " Found " < < targetStates - > getNumberOfSetBits ( ) < < " 'target' states. " ) ;
storm : : storage : : BitVector maybeStates = ~ ( * targetStates ) & ~ infinityStates ;
LOG4CPLUS_INFO ( logger , " Found " < < maybeStates . getNumberOfSetBits ( ) < < " 'maybe' states. " ) ;
/ / Create resulting vector .
std : : vector < Type > * result = new std : : vector < Type > ( this - > getModel ( ) . getNumberOfStates ( ) ) ;
/ / Get the starting row indices for the non - deterministic choices to reduce the resulting
/ / vector properly .
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
/ / Check whether there are states for which we have to compute the result .
const int maybeStatesSetBitCount = maybeStates . getNumberOfSetBits ( ) ;
if ( maybeStatesSetBitCount > 0 ) {
/ / First , we can eliminate the rows and columns from the original transition probability matrix for states
/ / whose probabilities are already known .
storm : : storage : : SparseMatrix < Type > * submatrix = this - > getModel ( ) . getTransitionMatrix ( ) - > getSubmatrix ( maybeStates , * this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ) ;
/ / Get the " new " nondeterministic choice indices for the submatrix .
std : : shared_ptr < std : : vector < uint_fast64_t > > subNondeterministicChoiceIndices = this - > computeNondeterministicChoiceIndicesForConstraint ( maybeStates ) ;
/ / Transform the submatrix to the gmm + + format to use its capabilities .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( * submatrix ) ;
/ / Create vector for results for maybe states .
std : : vector < Type > * x = new std : : vector < Type > ( maybeStatesSetBitCount ) ;
/ / Prepare the right - hand side of the equation system . For entry i this corresponds to
/ / the accumulated probability of going from state i to some ' yes ' state .
std : : vector < Type > b ( submatrix - > getRowCount ( ) ) ;
delete submatrix ;
if ( this - > getModel ( ) . hasTransitionRewards ( ) ) {
/ / If a transition - based reward model is available , we initialize the right - hand
/ / side to the vector resulting from summing the rows of the pointwise product
/ / of the transition probability matrix and the transition reward matrix .
std : : vector < Type > * pointwiseProductRowSumVector = this - > getModel ( ) . getTransitionMatrix ( ) - > getPointwiseProductRowSumVector ( * this - > getModel ( ) . getTransitionRewardMatrix ( ) ) ;
storm : : utility : : selectVectorValues ( & b , maybeStates , * nondeterministicChoiceIndices , * pointwiseProductRowSumVector ) ;
delete pointwiseProductRowSumVector ;
if ( this - > getModel ( ) . hasStateRewards ( ) ) {
/ / If a state - based reward model is also available , we need to add this vector
/ / as well . As the state reward vector contains entries not just for the states
/ / that we still consider ( i . e . maybeStates ) , we need to extract these values
/ / first .
std : : vector < Type > * subStateRewards = new std : : vector < Type > ( b . size ( ) ) ;
storm : : utility : : selectVectorValuesRepeatedly ( subStateRewards , maybeStates , * nondeterministicChoiceIndices , * this - > getModel ( ) . getStateRewardVector ( ) ) ;
gmm : : add ( * subStateRewards , b ) ;
delete subStateRewards ;
}
} else {
/ / If only a state - based reward model is available , we take this vector as the
/ / right - hand side . As the state reward vector contains entries not just for the
/ / states that we still consider ( i . e . maybeStates ) , we need to extract these values
/ / first .
storm : : utility : : selectVectorValuesRepeatedly ( & b , maybeStates , * nondeterministicChoiceIndices , * this - > getModel ( ) . getStateRewardVector ( ) ) ;
}
/ / Solve the corresponding system of equations .
this - > solveEquationSystem ( * gmmxxMatrix , x , b , * subNondeterministicChoiceIndices ) ;
/ / Set values of resulting vector according to result .
storm : : utility : : setVectorValues < Type > ( result , maybeStates , * x ) ;
delete x ;
delete gmmxxMatrix ;
}
/ / Set values of resulting vector that are known exactly .
storm : : utility : : setVectorValues ( result , * targetStates , storm : : utility : : constGetZero < Type > ( ) ) ;
storm : : utility : : setVectorValues ( result , infinityStates , storm : : utility : : constGetInfinity < Type > ( ) ) ;
/ / Delete temporary storages and return result .
delete targetStates ;
return result ;
}
private :
/*!
* Solves the given equation system under the given parameters using the power method .
*
@ -386,7 +80,7 @@ private:
* @ return The solution of the system of linear equations in form of the elements of the vector
* x .
*/
void solveEquationSystem ( gmm : : csr_m atrix< Type > const & A , std : : vector < Type > * x , std : : vector < Type > const & b , std : : vector < uint_fast64_t > const & nondeterministicChoiceIndices ) const {
void solveEquationSystem ( storm : : storage : : SparseM atrix< Type > const & matrix , std : : vector < Type > & x , std : : vector < Type > const & b , std : : vector < uint_fast64_t > const & nondeterministicChoiceIndices ) const {
/ / Get the settings object to customize solving .
storm : : settings : : Settings * s = storm : : settings : : instance ( ) ;
@ -395,43 +89,48 @@ private:
unsigned maxIterations = s - > get < unsigned > ( " maxiter " ) ;
bool relative = s - > get < bool > ( " relative " ) ;
/ / Transform the transition probability matrix to the gmm + + format to use its arithmetic .
gmm : : csr_matrix < Type > * gmmxxMatrix = storm : : adapters : : GmmxxAdapter : : toGmmxxSparseMatrix < Type > ( matrix ) ;
/ / Set up the environment for the power method .
std : : vector < Type > * temporaryResult = new std : : vector < Type > ( b . size ( ) ) ;
std : : vector < Type > * newX = new std : : vector < Type > ( x - > size ( ) ) ;
std : : vector < Type > multiplyResult ( matrix . getRowCount ( ) ) ;
std : : vector < Type > * currentX = & x ;
std : : vector < Type > * newX = new std : : vector < Type > ( x . size ( ) ) ;
std : : vector < Type > * swap = nullptr ;
bool converged = false ;
uint_fast64_t iterations = 0 ;
bool converged = false ;
/ / Proceed with the iterations as long as the method did not converge or reach the
/ / user - specified maximum number of iterations .
while ( ! converged & & iterations < maxIterations ) {
/ / Compute x ' = A * x + b .
gmm : : mult ( A , * x , * temporar yResult) ;
gmm : : add ( b , * temporar yResult) ;
gmm : : mult ( * gmmxxMatrix , * currentX , multipl yResult) ;
gmm : : add ( b , multipl yResult) ;
/ / Reduce the vector x ' by applying min / max for all non - deterministic choices .
if ( this - > minimumOperatorStack . top ( ) ) {
storm : : utility : : reduceVectorMin ( * temporar yResult, newX , nondeterministicChoiceIndices ) ;
storm : : utility : : reduceVectorMin ( multipl yResult, newX , nondeterministicChoiceIndices ) ;
} else {
storm : : utility : : reduceVectorMax ( * temporar yResult, newX , nondeterministicChoiceIndices ) ;
storm : : utility : : reduceVectorMax ( multipl yResult, newX , nondeterministicChoiceIndices ) ;
}
/ / Determine whether the method converged .
converged = storm : : utility : : equalModuloPrecision ( * x , * newX , precision , relative ) ;
converged = storm : : utility : : equalModuloPrecision ( * currentX , * newX , precision , relative ) ;
/ / Update environment variables .
swap = x ;
x = newX ;
swap = currentX ;
currentX = newX ;
newX = swap ;
+ + iterations ;
}
if ( iterations % 2 = = 1 ) {
delete x ;
std : : swap ( x , * currentX ) ;
delete currentX ;
} else {
delete newX ;
}
delete temporaryResult ;
delete gmmxxMatrix ;
/ / Check if the solver converged and issue a warning otherwise .
if ( converged ) {
@ -440,22 +139,6 @@ private:
LOG4CPLUS_WARN ( logger , " Iterative solver did not converge. " ) ;
}
}
std : : shared_ptr < std : : vector < uint_fast64_t > > computeNondeterministicChoiceIndicesForConstraint ( storm : : storage : : BitVector constraint ) const {
std : : shared_ptr < std : : vector < uint_fast64_t > > nondeterministicChoiceIndices = this - > getModel ( ) . getNondeterministicChoiceIndices ( ) ;
std : : shared_ptr < std : : vector < uint_fast64_t > > subNondeterministicChoiceIndices ( new std : : vector < uint_fast64_t > ( constraint . getNumberOfSetBits ( ) + 1 ) ) ;
uint_fast64_t currentRowCount = 0 ;
uint_fast64_t currentIndexCount = 1 ;
( * subNondeterministicChoiceIndices ) [ 0 ] = 0 ;
for ( auto index : constraint ) {
( * subNondeterministicChoiceIndices ) [ currentIndexCount ] = currentRowCount + ( * nondeterministicChoiceIndices ) [ index + 1 ] - ( * nondeterministicChoiceIndices ) [ index ] ;
currentRowCount + = ( * nondeterministicChoiceIndices ) [ index + 1 ] - ( * nondeterministicChoiceIndices ) [ index ] ;
+ + currentIndexCount ;
}
( * subNondeterministicChoiceIndices ) [ constraint . getNumberOfSetBits ( ) ] = currentRowCount ;
return subNondeterministicChoiceIndices ;
}
} ;
} / / namespace modelChecker