From f1c379bbe350ea71453ccab9d6f02526b165cda1 Mon Sep 17 00:00:00 2001 From: dehnert Date: Sat, 9 Mar 2013 21:18:36 +0100 Subject: [PATCH] Moved model checking functionality for MDPs for general superclass such that specialized model checkers only need to implement certain operations. Fixed tests. --- src/modelchecker/DtmcPrctlModelChecker.h | 38 +- src/modelchecker/GmmxxDtmcPrctlModelChecker.h | 44 ++- src/modelchecker/GmmxxMdpPrctlModelChecker.h | 369 ++---------------- src/modelchecker/MdpPrctlModelChecker.h | 255 +++++++++++- .../GmmxxMdpPrctModelCheckerTest.cpp | 12 +- 5 files changed, 325 insertions(+), 393 deletions(-) diff --git a/src/modelchecker/DtmcPrctlModelChecker.h b/src/modelchecker/DtmcPrctlModelChecker.h index d38e6f2b3..3fa4cc238 100644 --- a/src/modelchecker/DtmcPrctlModelChecker.h +++ b/src/modelchecker/DtmcPrctlModelChecker.h @@ -115,7 +115,7 @@ public: storm::utility::setVectorValues(result, *rightStates, storm::utility::constGetOne()); // Perform the matrix vector multiplication as often as required by the formula bound. - this->performMatrixVectorMultiplication(tmpMatrix, &result, nullptr, formula.getBound()); + this->performMatrixVectorMultiplication(tmpMatrix, *result, nullptr, formula.getBound()); // Return result. return result; @@ -139,7 +139,7 @@ public: delete nextStates; // Perform one single matrix-vector multiplication. - this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), &result); + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result); // Return result. return result; @@ -228,20 +228,20 @@ public: // Initialize the x vector with 0.5 for each element. This is the initial guess for // the iterative solvers. It should be safe as for all 'maybe' states we know that the // probability is strictly larger than 0. - std::vector* x = new std::vector(maybeStatesSetBitCount, Type(0.5)); + std::vector x(maybeStatesSetBitCount, Type(0.5)); // Prepare the right-hand side of the equation system. For entry i this corresponds to // the accumulated probability of going from state i to some 'yes' state. std::vector b(maybeStatesSetBitCount); this->getModel().getTransitionMatrix()->getConstrainedRowSumVector(maybeStates, statesWithProbability1, &b); - this->solveEquationSystem(*submatrix, &x, b); + this->solveEquationSystem(*submatrix, x, b); // Delete the created submatrix. delete submatrix; // Set values of resulting vector according to result. - storm::utility::setVectorValues(result, maybeStates, *x); + storm::utility::setVectorValues(result, maybeStates, x); } else if (qualitative) { // If we only need a qualitative result, we can safely assume that the results will only be compared to // bounds which are either 0 or 1. Setting the value to 0.5 is thus safe. @@ -273,7 +273,7 @@ public: std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); // Perform the actual matrix-vector multiplication as long as the bound of the formula is met. - this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), &result, nullptr, formula.getBound()); + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result, nullptr, formula.getBound()); // Return result. return result; @@ -306,7 +306,7 @@ public: std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); - this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), &result, totalRewardVector, formula.getBound()); + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result, totalRewardVector, formula.getBound()); // Delete temporary variables and return result. delete totalRewardVector; @@ -351,16 +351,16 @@ public: // Initialize the x vector with 1 for each element. This is the initial guess for // the iterative solvers. - std::vector* x = new std::vector(maybeStatesSetBitCount, storm::utility::constGetOne()); + std::vector x(maybeStatesSetBitCount, storm::utility::constGetOne()); // Prepare the right-hand side of the equation system. - std::vector* b = new std::vector(maybeStatesSetBitCount); + std::vector b(maybeStatesSetBitCount); if (this->getModel().hasTransitionRewards()) { // If a transition-based reward model is available, we initialize the right-hand // side to the vector resulting from summing the rows of the pointwise product // of the transition probability matrix and the transition reward matrix. std::vector* pointwiseProductRowSumVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix()); - storm::utility::selectVectorValues(b, maybeStates, *pointwiseProductRowSumVector); + storm::utility::selectVectorValues(&b, maybeStates, *pointwiseProductRowSumVector); delete pointwiseProductRowSumVector; if (this->getModel().hasStateRewards()) { @@ -368,27 +368,25 @@ public: // as well. As the state reward vector contains entries not just for the states // that we still consider (i.e. maybeStates), we need to extract these values // first. - std::vector* subStateRewards = new std::vector(maybeStatesSetBitCount); - storm::utility::selectVectorValues(subStateRewards, maybeStates, *this->getModel().getStateRewardVector()); - gmm::add(*subStateRewards, *b); - delete subStateRewards; + std::vector subStateRewards(maybeStatesSetBitCount); + storm::utility::selectVectorValues(&subStateRewards, maybeStates, *this->getModel().getStateRewardVector()); + gmm::add(subStateRewards, b); } } else { // If only a state-based reward model is available, we take this vector as the // right-hand side. As the state reward vector contains entries not just for the // states that we still consider (i.e. maybeStates), we need to extract these values // first. - storm::utility::selectVectorValues(b, maybeStates, *this->getModel().getStateRewardVector()); + storm::utility::selectVectorValues(&b, maybeStates, *this->getModel().getStateRewardVector()); } - this->solveEquationSystem(*submatrix, &x, *b); + this->solveEquationSystem(*submatrix, x, b); // Set values of resulting vector according to result. - storm::utility::setVectorValues(result, maybeStates, *x); + storm::utility::setVectorValues(result, maybeStates, x); // Delete temporary matrix and right-hand side. delete submatrix; - delete b; } // Set values of resulting vector that are known exactly. @@ -401,9 +399,9 @@ public: } private: - virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector** vector, std::vector* summand = nullptr, uint_fast64_t repetitions = 1) const = 0; + virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector* summand = nullptr, uint_fast64_t repetitions = 1) const = 0; - virtual void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector** vector, std::vector& b) const = 0; + virtual void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector const& b) const = 0; }; } //namespace modelChecker diff --git a/src/modelchecker/GmmxxDtmcPrctlModelChecker.h b/src/modelchecker/GmmxxDtmcPrctlModelChecker.h index 97c41093f..c96fb4cac 100644 --- a/src/modelchecker/GmmxxDtmcPrctlModelChecker.h +++ b/src/modelchecker/GmmxxDtmcPrctlModelChecker.h @@ -96,25 +96,33 @@ public: private: - virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector** vector, std::vector* summand, uint_fast64_t repetitions = 1) const { + virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector* summand, uint_fast64_t repetitions = 1) const { // Transform the transition probability matrix to the gmm++ format to use its arithmetic. gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(matrix); // Now perform matrix-vector multiplication as long as we meet the bound. std::vector* swap = nullptr; - std::vector* tmpResult = new std::vector(this->getModel().getNumberOfStates()); + std::vector* currentVector = &vector; + std::vector* tmpVector = new std::vector(this->getModel().getNumberOfStates()); for (uint_fast64_t i = 0; i < repetitions; ++i) { - gmm::mult(*gmmxxMatrix, **vector, *tmpResult); - swap = tmpResult; - tmpResult = *vector; - *vector = swap; + gmm::mult(*gmmxxMatrix, *currentVector, *tmpVector); + swap = tmpVector; + tmpVector = currentVector; + currentVector = swap; // If requested, add an offset to the current result vector. if (summand != nullptr) { - gmm::add(*summand, **vector); + gmm::add(*summand, *currentVector); } } - delete tmpResult; + + if (repetitions % 2 == 1) { + std::swap(vector, *currentVector); + delete currentVector; + } else { + delete tmpVector; + } + delete gmmxxMatrix; } @@ -128,7 +136,7 @@ private: * @return The solution of the system of linear equations in form of the elements of the vector * x. */ - virtual void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector** vector, std::vector& b) const { + virtual void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector const& b) const { // Get the settings object to customize linear solving. storm::settings::Settings* s = storm::settings::instance(); @@ -155,13 +163,13 @@ private: if (s->getString("lemethod") == "bicgstab") { LOG4CPLUS_INFO(logger, "Using BiCGStab method."); if (precond == "ilu") { - gmm::bicgstab(*A, **vector, b, gmm::ilu_precond>(*A), iter); + gmm::bicgstab(*A, vector, b, gmm::ilu_precond>(*A), iter); } else if (precond == "diagonal") { - gmm::bicgstab(*A, **vector, b, gmm::diagonal_precond>(*A), iter); + gmm::bicgstab(*A, vector, b, gmm::diagonal_precond>(*A), iter); } else if (precond == "ildlt") { - gmm::bicgstab(*A, **vector, b, gmm::ildlt_precond>(*A), iter); + gmm::bicgstab(*A, vector, b, gmm::ildlt_precond>(*A), iter); } else if (precond == "none") { - gmm::bicgstab(*A, **vector, b, gmm::identity_matrix(), iter); + gmm::bicgstab(*A, vector, b, gmm::identity_matrix(), iter); } // Check if the solver converged and issue a warning otherwise. @@ -173,13 +181,13 @@ private: } else if (s->getString("lemethod") == "qmr") { LOG4CPLUS_INFO(logger, "Using QMR method."); if (precond == "ilu") { - gmm::qmr(*A, **vector, b, gmm::ilu_precond>(*A), iter); + gmm::qmr(*A, vector, b, gmm::ilu_precond>(*A), iter); } else if (precond == "diagonal") { - gmm::qmr(*A, **vector, b, gmm::diagonal_precond>(*A), iter); + gmm::qmr(*A, vector, b, gmm::diagonal_precond>(*A), iter); } else if (precond == "ildlt") { - gmm::qmr(*A, **vector, b, gmm::ildlt_precond>(*A), iter); + gmm::qmr(*A, vector, b, gmm::ildlt_precond>(*A), iter); } else if (precond == "none") { - gmm::qmr(*A, **vector, b, gmm::identity_matrix(), iter); + gmm::qmr(*A, vector, b, gmm::identity_matrix(), iter); } // Check if the solver converged and issue a warning otherwise. @@ -190,7 +198,7 @@ private: } } else if (s->getString("lemethod") == "jacobi") { LOG4CPLUS_INFO(logger, "Using Jacobi method."); - solveLinearEquationSystemWithJacobi(*A, **vector, b); + solveLinearEquationSystemWithJacobi(*A, vector, b); } delete A; diff --git a/src/modelchecker/GmmxxMdpPrctlModelChecker.h b/src/modelchecker/GmmxxMdpPrctlModelChecker.h index a329fc303..d27b26b21 100644 --- a/src/modelchecker/GmmxxMdpPrctlModelChecker.h +++ b/src/modelchecker/GmmxxMdpPrctlModelChecker.h @@ -43,339 +43,33 @@ public: virtual ~GmmxxMdpPrctlModelChecker() { } - virtual std::vector* checkBoundedUntil(const storm::formula::BoundedUntil& formula, bool qualitative) const { - // First, we need to compute the states that satisfy the sub-formulas of the until-formula. - storm::storage::BitVector* leftStates = formula.getLeft().check(*this); - storm::storage::BitVector* rightStates = formula.getRight().check(*this); - - // Copy the matrix before we make any changes. - storm::storage::SparseMatrix tmpMatrix(*this->getModel().getTransitionMatrix()); - +private: + virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector* summand = nullptr, uint_fast64_t repetitions = 1) const { // Get the starting row indices for the non-deterministic choices to reduce the resulting // vector properly. std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - // Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula. - tmpMatrix.makeRowsAbsorbing(~(*leftStates | *rightStates) | *rightStates, *nondeterministicChoiceIndices); - // Transform the transition probability matrix to the gmm++ format to use its arithmetic. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(tmpMatrix); - - // Create the vector with which to multiply. - std::vector* result = new std::vector(this->getModel().getNumberOfStates()); - storm::utility::setVectorValues(result, *rightStates, storm::utility::constGetOne()); + gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(matrix); // Create vector for result of multiplication, which is reduced to the result vector after // each multiplication. - std::vector* multiplyResult = new std::vector(this->getModel().getTransitionMatrix()->getRowCount(), 0); + std::vector multiplyResult(matrix.getRowCount()); // Now perform matrix-vector multiplication as long as we meet the bound of the formula. - for (uint_fast64_t i = 0; i < formula.getBound(); ++i) { - gmm::mult(*gmmxxMatrix, *result, *multiplyResult); + for (uint_fast64_t i = 0; i < repetitions; ++i) { + gmm::mult(*gmmxxMatrix, vector, multiplyResult); if (this->minimumOperatorStack.top()) { - storm::utility::reduceVectorMin(*multiplyResult, result, *nondeterministicChoiceIndices); + storm::utility::reduceVectorMin(multiplyResult, &vector, *nondeterministicChoiceIndices); } else { - storm::utility::reduceVectorMax(*multiplyResult, result, *nondeterministicChoiceIndices); + storm::utility::reduceVectorMax(multiplyResult, &vector, *nondeterministicChoiceIndices); } } - delete multiplyResult; // Delete intermediate results and return result. delete gmmxxMatrix; - delete leftStates; - delete rightStates; - return result; - } - - virtual std::vector* checkNext(const storm::formula::Next& formula, bool qualitative) const { - // First, we need to compute the states that satisfy the sub-formula of the next-formula. - storm::storage::BitVector* nextStates = formula.getChild().check(*this); - - // Transform the transition probability matrix to the gmm++ format to use its arithmetic. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(*this->getModel().getTransitionMatrix()); - - // Create the vector with which to multiply and initialize it correctly. - std::vector* result = new std::vector(this->getModel().getNumberOfStates()); - storm::utility::setVectorValues(result, *nextStates, storm::utility::constGetOne()); - - // Delete obsolete sub-result. - delete nextStates; - - // Create resulting vector. - std::vector* temporaryResult = new std::vector(this->getModel().getTransitionMatrix()->getRowCount()); - - // Perform the actual computation, namely matrix-vector multiplication. - gmm::mult(*gmmxxMatrix, *result, *temporaryResult); - - // Get the starting row indices for the non-deterministic choices to reduce the resulting - // vector properly. - std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - - if (this->minimumOperatorStack.top()) { - storm::utility::reduceVectorMin(*temporaryResult, result, *nondeterministicChoiceIndices); - } else { - storm::utility::reduceVectorMax(*temporaryResult, result, *nondeterministicChoiceIndices); - } - - // Delete temporary matrix plus temporary result and return result. - delete gmmxxMatrix; - delete temporaryResult; - return result; - } - - virtual std::vector* checkUntil(const storm::formula::Until& formula, bool qualitative) const { - // First, we need to compute the states that satisfy the sub-formulas of the until-formula. - storm::storage::BitVector* leftStates = formula.getLeft().check(*this); - storm::storage::BitVector* rightStates = formula.getRight().check(*this); - - // Then, we need to identify the states which have to be taken out of the matrix, i.e. - // all states that have probability 0 and 1 of satisfying the until-formula. - storm::storage::BitVector statesWithProbability0(this->getModel().getNumberOfStates()); - storm::storage::BitVector statesWithProbability1(this->getModel().getNumberOfStates()); - if (this->minimumOperatorStack.top()) { - storm::utility::GraphAnalyzer::performProb01Min(this->getModel(), *leftStates, *rightStates, &statesWithProbability0, &statesWithProbability1); - } else { - storm::utility::GraphAnalyzer::performProb01Max(this->getModel(), *leftStates, *rightStates, &statesWithProbability0, &statesWithProbability1); - } - - // Delete sub-results that are obsolete now. - delete leftStates; - delete rightStates; - - LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); - LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); - storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); - LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); - - // Create resulting vector. - std::vector* result = new std::vector(this->getModel().getNumberOfStates()); - - // Only try to solve system if there are states for which the probability is unknown. - uint_fast64_t maybeStatesSetBitCount = maybeStates.getNumberOfSetBits(); - if (maybeStatesSetBitCount > 0) { - // First, we can eliminate the rows and columns from the original transition probability matrix for states - // whose probabilities are already known. - storm::storage::SparseMatrix* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates, *this->getModel().getNondeterministicChoiceIndices()); - - // Get the "new" nondeterministic choice indices for the submatrix. - std::shared_ptr> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); - - // Transform the submatrix to the gmm++ format to use its capabilities. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(*submatrix); - - // Create vector for results for maybe states. - std::vector* x = new std::vector(maybeStatesSetBitCount); - - // Prepare the right-hand side of the equation system. For entry i this corresponds to - // the accumulated probability of going from state i to some 'yes' state. - std::vector b(submatrix->getRowCount()); - this->getModel().getTransitionMatrix()->getConstrainedRowSumVector(maybeStates, *this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, &b); - delete submatrix; - - // Solve the corresponding system of equations. - this->solveEquationSystem(*gmmxxMatrix, x, b, *subNondeterministicChoiceIndices); - - // Set values of resulting vector according to result. - storm::utility::setVectorValues(result, maybeStates, *x); - - // Delete temporary matrix and vector. - delete gmmxxMatrix; - delete x; - } - - // Set values of resulting vector that are known exactly. - storm::utility::setVectorValues(result, statesWithProbability0, storm::utility::constGetZero()); - storm::utility::setVectorValues(result, statesWithProbability1, storm::utility::constGetOne()); - - return result; - } - - virtual std::vector* checkInstantaneousReward(const storm::formula::InstantaneousReward& formula, bool qualitative) const { - // Only compute the result if the model has a state-based reward model. - if (!this->getModel().hasStateRewards()) { - LOG4CPLUS_ERROR(logger, "Missing (state-based) reward model for formula."); - throw storm::exceptions::InvalidPropertyException() << "Missing (state-based) reward model for formula."; - } - - // Get the starting row indices for the non-deterministic choices to reduce the resulting - // vector properly. - std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - - // Transform the transition probability matrix to the gmm++ format to use its arithmetic. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(*this->getModel().getTransitionMatrix()); - - // Initialize result to state rewards of the model. - std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); - - // Create vector for result of multiplication, which is reduced to the result vector after - // each multiplication. - std::vector* multiplyResult = new std::vector(this->getModel().getTransitionMatrix()->getRowCount(), 0); - - // Now perform matrix-vector multiplication as long as we meet the bound of the formula. - for (uint_fast64_t i = 0; i < formula.getBound(); ++i) { - gmm::mult(*gmmxxMatrix, *result, *multiplyResult); - if (this->minimumOperatorStack.top()) { - storm::utility::reduceVectorMin(*multiplyResult, result, *nondeterministicChoiceIndices); - } else { - storm::utility::reduceVectorMax(*multiplyResult, result, *nondeterministicChoiceIndices); - } - } - delete multiplyResult; - - // Delete temporary variables and return result. - delete gmmxxMatrix; - return result; - } - - virtual std::vector* checkCumulativeReward(const storm::formula::CumulativeReward& formula, bool qualitative) const { - // Only compute the result if the model has at least one reward model. - if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { - LOG4CPLUS_ERROR(logger, "Missing reward model for formula."); - throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; - } - - // Get the starting row indices for the non-deterministic choices to reduce the resulting - // vector properly. - std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - - // Transform the transition probability matrix to the gmm++ format to use its arithmetic. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(*this->getModel().getTransitionMatrix()); - - // Compute the reward vector to add in each step based on the available reward models. - std::vector* totalRewardVector = nullptr; - if (this->getModel().hasTransitionRewards()) { - totalRewardVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix()); - if (this->getModel().hasStateRewards()) { - gmm::add(*this->getModel().getStateRewardVector(), *totalRewardVector); - } - } else { - totalRewardVector = new std::vector(*this->getModel().getStateRewardVector()); - } - - std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); - - // Create vector for result of multiplication, which is reduced to the result vector after - // each multiplication. - std::vector* multiplyResult = new std::vector(this->getModel().getTransitionMatrix()->getRowCount(), 0); - - // Now perform matrix-vector multiplication as long as we meet the bound of the formula. - for (uint_fast64_t i = 0; i < formula.getBound(); ++i) { - gmm::mult(*gmmxxMatrix, *result, *multiplyResult); - if (this->minimumOperatorStack.top()) { - storm::utility::reduceVectorMin(*multiplyResult, result, *nondeterministicChoiceIndices); - } else { - storm::utility::reduceVectorMax(*multiplyResult, result, *nondeterministicChoiceIndices); - } - - // Add the reward vector to the result. - gmm::add(*totalRewardVector, *result); - } - delete multiplyResult; - - // Delete temporary variables and return result. - delete gmmxxMatrix; - delete totalRewardVector; - return result; } - virtual std::vector* checkReachabilityReward(const storm::formula::ReachabilityReward& formula, bool qualitative) const { - // Only compute the result if the model has at least one reward model. - if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { - LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula"); - throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; - } - - // Determine the states for which the target predicate holds. - storm::storage::BitVector* targetStates = formula.getChild().check(*this); - - // Determine which states have a reward of infinity by definition. - storm::storage::BitVector infinityStates(this->getModel().getNumberOfStates()); - storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true); - if (this->minimumOperatorStack.top()) { - storm::utility::GraphAnalyzer::performProb1A(this->getModel(), trueStates, *targetStates, &infinityStates); - } else { - storm::utility::GraphAnalyzer::performProb1E(this->getModel(), trueStates, *targetStates, &infinityStates); - } - infinityStates.complement(); - - LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); - LOG4CPLUS_INFO(logger, "Found " << targetStates->getNumberOfSetBits() << " 'target' states."); - storm::storage::BitVector maybeStates = ~(*targetStates) & ~infinityStates; - LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); - - // Create resulting vector. - std::vector* result = new std::vector(this->getModel().getNumberOfStates()); - - // Get the starting row indices for the non-deterministic choices to reduce the resulting - // vector properly. - std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - - // Check whether there are states for which we have to compute the result. - const int maybeStatesSetBitCount = maybeStates.getNumberOfSetBits(); - if (maybeStatesSetBitCount > 0) { - // First, we can eliminate the rows and columns from the original transition probability matrix for states - // whose probabilities are already known. - storm::storage::SparseMatrix* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates, *this->getModel().getNondeterministicChoiceIndices()); - - // Get the "new" nondeterministic choice indices for the submatrix. - std::shared_ptr> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); - - // Transform the submatrix to the gmm++ format to use its capabilities. - gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(*submatrix); - - // Create vector for results for maybe states. - std::vector* x = new std::vector(maybeStatesSetBitCount); - - // Prepare the right-hand side of the equation system. For entry i this corresponds to - // the accumulated probability of going from state i to some 'yes' state. - std::vector b(submatrix->getRowCount()); - delete submatrix; - - if (this->getModel().hasTransitionRewards()) { - // If a transition-based reward model is available, we initialize the right-hand - // side to the vector resulting from summing the rows of the pointwise product - // of the transition probability matrix and the transition reward matrix. - std::vector* pointwiseProductRowSumVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix()); - storm::utility::selectVectorValues(&b, maybeStates, *nondeterministicChoiceIndices, *pointwiseProductRowSumVector); - delete pointwiseProductRowSumVector; - - if (this->getModel().hasStateRewards()) { - // If a state-based reward model is also available, we need to add this vector - // as well. As the state reward vector contains entries not just for the states - // that we still consider (i.e. maybeStates), we need to extract these values - // first. - std::vector* subStateRewards = new std::vector(b.size()); - storm::utility::selectVectorValuesRepeatedly(subStateRewards, maybeStates, *nondeterministicChoiceIndices, *this->getModel().getStateRewardVector()); - gmm::add(*subStateRewards, b); - delete subStateRewards; - } - } else { - // If only a state-based reward model is available, we take this vector as the - // right-hand side. As the state reward vector contains entries not just for the - // states that we still consider (i.e. maybeStates), we need to extract these values - // first. - storm::utility::selectVectorValuesRepeatedly(&b, maybeStates, *nondeterministicChoiceIndices, *this->getModel().getStateRewardVector()); - } - - // Solve the corresponding system of equations. - this->solveEquationSystem(*gmmxxMatrix, x, b, *subNondeterministicChoiceIndices); - - // Set values of resulting vector according to result. - storm::utility::setVectorValues(result, maybeStates, *x); - delete x; - delete gmmxxMatrix; - } - - // Set values of resulting vector that are known exactly. - storm::utility::setVectorValues(result, *targetStates, storm::utility::constGetZero()); - storm::utility::setVectorValues(result, infinityStates, storm::utility::constGetInfinity()); - - // Delete temporary storages and return result. - delete targetStates; - return result; - } - -private: /*! * Solves the given equation system under the given parameters using the power method. * @@ -386,7 +80,7 @@ private: * @return The solution of the system of linear equations in form of the elements of the vector * x. */ - void solveEquationSystem(gmm::csr_matrix const& A, std::vector* x, std::vector const& b, std::vector const& nondeterministicChoiceIndices) const { + void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector& x, std::vector const& b, std::vector const& nondeterministicChoiceIndices) const { // Get the settings object to customize solving. storm::settings::Settings* s = storm::settings::instance(); @@ -395,43 +89,48 @@ private: unsigned maxIterations = s->get("maxiter"); bool relative = s->get("relative"); + // Transform the transition probability matrix to the gmm++ format to use its arithmetic. + gmm::csr_matrix* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix(matrix); + // Set up the environment for the power method. - std::vector* temporaryResult = new std::vector(b.size()); - std::vector* newX = new std::vector(x->size()); + std::vector multiplyResult(matrix.getRowCount()); + std::vector* currentX = &x; + std::vector* newX = new std::vector(x.size()); std::vector* swap = nullptr; - bool converged = false; uint_fast64_t iterations = 0; + bool converged = false; // Proceed with the iterations as long as the method did not converge or reach the // user-specified maximum number of iterations. while (!converged && iterations < maxIterations) { // Compute x' = A*x + b. - gmm::mult(A, *x, *temporaryResult); - gmm::add(b, *temporaryResult); + gmm::mult(*gmmxxMatrix, *currentX, multiplyResult); + gmm::add(b, multiplyResult); // Reduce the vector x' by applying min/max for all non-deterministic choices. if (this->minimumOperatorStack.top()) { - storm::utility::reduceVectorMin(*temporaryResult, newX, nondeterministicChoiceIndices); + storm::utility::reduceVectorMin(multiplyResult, newX, nondeterministicChoiceIndices); } else { - storm::utility::reduceVectorMax(*temporaryResult, newX, nondeterministicChoiceIndices); + storm::utility::reduceVectorMax(multiplyResult, newX, nondeterministicChoiceIndices); } // Determine whether the method converged. - converged = storm::utility::equalModuloPrecision(*x, *newX, precision, relative); + converged = storm::utility::equalModuloPrecision(*currentX, *newX, precision, relative); // Update environment variables. - swap = x; - x = newX; + swap = currentX; + currentX = newX; newX = swap; ++iterations; } if (iterations % 2 == 1) { - delete x; + std::swap(x, *currentX); + delete currentX; } else { delete newX; } - delete temporaryResult; + delete gmmxxMatrix; // Check if the solver converged and issue a warning otherwise. if (converged) { @@ -440,22 +139,6 @@ private: LOG4CPLUS_WARN(logger, "Iterative solver did not converge."); } } - - std::shared_ptr> computeNondeterministicChoiceIndicesForConstraint(storm::storage::BitVector constraint) const { - std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); - std::shared_ptr> subNondeterministicChoiceIndices(new std::vector(constraint.getNumberOfSetBits() + 1)); - uint_fast64_t currentRowCount = 0; - uint_fast64_t currentIndexCount = 1; - (*subNondeterministicChoiceIndices)[0] = 0; - for (auto index : constraint) { - (*subNondeterministicChoiceIndices)[currentIndexCount] = currentRowCount + (*nondeterministicChoiceIndices)[index + 1] - (*nondeterministicChoiceIndices)[index]; - currentRowCount += (*nondeterministicChoiceIndices)[index + 1] - (*nondeterministicChoiceIndices)[index]; - ++currentIndexCount; - } - (*subNondeterministicChoiceIndices)[constraint.getNumberOfSetBits()] = currentRowCount; - - return subNondeterministicChoiceIndices; - } }; } //namespace modelChecker diff --git a/src/modelchecker/MdpPrctlModelChecker.h b/src/modelchecker/MdpPrctlModelChecker.h index b71d1d934..0f50dfae9 100644 --- a/src/modelchecker/MdpPrctlModelChecker.h +++ b/src/modelchecker/MdpPrctlModelChecker.h @@ -189,7 +189,28 @@ public: * @param formula The Bounded Until path formula to check * @returns for each state the probability that the path formula holds. */ - virtual std::vector* checkBoundedUntil(const storm::formula::BoundedUntil& formula, bool qualitative) const = 0; + virtual std::vector* checkBoundedUntil(const storm::formula::BoundedUntil& formula, bool qualitative) const { + // First, we need to compute the states that satisfy the sub-formulas of the until-formula. + storm::storage::BitVector* leftStates = formula.getLeft().check(*this); + storm::storage::BitVector* rightStates = formula.getRight().check(*this); + + // Copy the matrix before we make any changes. + storm::storage::SparseMatrix tmpMatrix(*this->getModel().getTransitionMatrix()); + + // Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula. + tmpMatrix.makeRowsAbsorbing(~(*leftStates | *rightStates) | *rightStates, *this->getModel().getNondeterministicChoiceIndices()); + + // Create the vector with which to multiply. + std::vector* result = new std::vector(this->getModel().getNumberOfStates()); + storm::utility::setVectorValues(result, *rightStates, storm::utility::constGetOne()); + + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result, nullptr, formula.getBound()); + + // Delete intermediate results and return result. + delete leftStates; + delete rightStates; + return result; + } /*! * The check method for a path formula with a Next operator node as root in its formula tree @@ -197,7 +218,22 @@ public: * @param formula The Next path formula to check * @returns for each state the probability that the path formula holds. */ - virtual std::vector* checkNext(const storm::formula::Next& formula, bool qualitative) const = 0; + virtual std::vector* checkNext(const storm::formula::Next& formula, bool qualitative) const { + // First, we need to compute the states that satisfy the sub-formula of the next-formula. + storm::storage::BitVector* nextStates = formula.getChild().check(*this); + + // Create the vector with which to multiply and initialize it correctly. + std::vector* result = new std::vector(this->getModel().getNumberOfStates()); + storm::utility::setVectorValues(result, *nextStates, storm::utility::constGetOne()); + + // Delete obsolete sub-result. + delete nextStates; + + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result); + + // Return result. + return result; + } /*! * The check method for a path formula with a Bounded Eventually operator node as root in its @@ -246,7 +282,67 @@ public: * @param formula The Until path formula to check * @returns for each state the probability that the path formula holds. */ - virtual std::vector* checkUntil(const storm::formula::Until& formula, bool qualitative) const = 0; + virtual std::vector* checkUntil(const storm::formula::Until& formula, bool qualitative) const { + // First, we need to compute the states that satisfy the sub-formulas of the until-formula. + storm::storage::BitVector* leftStates = formula.getLeft().check(*this); + storm::storage::BitVector* rightStates = formula.getRight().check(*this); + + // Then, we need to identify the states which have to be taken out of the matrix, i.e. + // all states that have probability 0 and 1 of satisfying the until-formula. + storm::storage::BitVector statesWithProbability0(this->getModel().getNumberOfStates()); + storm::storage::BitVector statesWithProbability1(this->getModel().getNumberOfStates()); + if (this->minimumOperatorStack.top()) { + storm::utility::GraphAnalyzer::performProb01Min(this->getModel(), *leftStates, *rightStates, &statesWithProbability0, &statesWithProbability1); + } else { + storm::utility::GraphAnalyzer::performProb01Max(this->getModel(), *leftStates, *rightStates, &statesWithProbability0, &statesWithProbability1); + } + + // Delete sub-results that are obsolete now. + delete leftStates; + delete rightStates; + + LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states."); + LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states."); + storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1); + LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); + + // Create resulting vector. + std::vector* result = new std::vector(this->getModel().getNumberOfStates()); + + // Only try to solve system if there are states for which the probability is unknown. + uint_fast64_t maybeStatesSetBitCount = maybeStates.getNumberOfSetBits(); + if (maybeStatesSetBitCount > 0) { + // First, we can eliminate the rows and columns from the original transition probability matrix for states + // whose probabilities are already known. + storm::storage::SparseMatrix* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates, *this->getModel().getNondeterministicChoiceIndices()); + + // Get the "new" nondeterministic choice indices for the submatrix. + std::shared_ptr> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); + + // Create vector for results for maybe states. + std::vector x(maybeStatesSetBitCount); + + // Prepare the right-hand side of the equation system. For entry i this corresponds to + // the accumulated probability of going from state i to some 'yes' state. + std::vector b(submatrix->getRowCount()); + this->getModel().getTransitionMatrix()->getConstrainedRowSumVector(maybeStates, *this->getModel().getNondeterministicChoiceIndices(), statesWithProbability1, &b); + + // Solve the corresponding system of equations. + this->solveEquationSystem(*submatrix, x, b, *subNondeterministicChoiceIndices); + + // Set values of resulting vector according to result. + storm::utility::setVectorValues(result, maybeStates, x); + + // Delete temporary matrix. + delete submatrix; + } + + // Set values of resulting vector that are known exactly. + storm::utility::setVectorValues(result, statesWithProbability0, storm::utility::constGetZero()); + storm::utility::setVectorValues(result, statesWithProbability1, storm::utility::constGetOne()); + + return result; + } /*! * The check method for a path formula with an Instantaneous Reward operator node as root in its @@ -255,7 +351,21 @@ public: * @param formula The Instantaneous Reward formula to check * @returns for each state the reward that the instantaneous reward yields */ - virtual std::vector* checkInstantaneousReward(const storm::formula::InstantaneousReward& formula, bool qualitative) const = 0; + virtual std::vector* checkInstantaneousReward(const storm::formula::InstantaneousReward& formula, bool qualitative) const { + // Only compute the result if the model has a state-based reward model. + if (!this->getModel().hasStateRewards()) { + LOG4CPLUS_ERROR(logger, "Missing (state-based) reward model for formula."); + throw storm::exceptions::InvalidPropertyException() << "Missing (state-based) reward model for formula."; + } + + // Initialize result to state rewards of the model. + std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); + + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result, nullptr, formula.getBound()); + + // Return result. + return result; + } /*! * The check method for a path formula with a Cumulative Reward operator node as root in its @@ -264,7 +374,32 @@ public: * @param formula The Cumulative Reward formula to check * @returns for each state the reward that the cumulative reward yields */ - virtual std::vector* checkCumulativeReward(const storm::formula::CumulativeReward& formula, bool qualitative) const = 0; + virtual std::vector* checkCumulativeReward(const storm::formula::CumulativeReward& formula, bool qualitative) const { + // Only compute the result if the model has at least one reward model. + if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { + LOG4CPLUS_ERROR(logger, "Missing reward model for formula."); + throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; + } + + // Compute the reward vector to add in each step based on the available reward models. + std::vector* totalRewardVector = nullptr; + if (this->getModel().hasTransitionRewards()) { + totalRewardVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix()); + if (this->getModel().hasStateRewards()) { + gmm::add(*this->getModel().getStateRewardVector(), *totalRewardVector); + } + } else { + totalRewardVector = new std::vector(*this->getModel().getStateRewardVector()); + } + + std::vector* result = new std::vector(*this->getModel().getStateRewardVector()); + + this->performMatrixVectorMultiplication(*this->getModel().getTransitionMatrix(), *result, totalRewardVector, formula.getBound()); + + // Delete temporary variables and return result. + delete totalRewardVector; + return result; + } /*! * The check method for a path formula with a Reachability Reward operator node as root in its @@ -273,10 +408,118 @@ public: * @param formula The Reachbility Reward formula to check * @returns for each state the reward that the reachability reward yields */ - virtual std::vector* checkReachabilityReward(const storm::formula::ReachabilityReward& formula, bool qualitative) const = 0; + virtual std::vector* checkReachabilityReward(const storm::formula::ReachabilityReward& formula, bool qualitative) const { + // Only compute the result if the model has at least one reward model. + if (!this->getModel().hasStateRewards() && !this->getModel().hasTransitionRewards()) { + LOG4CPLUS_ERROR(logger, "Missing reward model for formula. Skipping formula"); + throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula."; + } + + // Determine the states for which the target predicate holds. + storm::storage::BitVector* targetStates = formula.getChild().check(*this); + + // Determine which states have a reward of infinity by definition. + storm::storage::BitVector infinityStates(this->getModel().getNumberOfStates()); + storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true); + if (this->minimumOperatorStack.top()) { + storm::utility::GraphAnalyzer::performProb1A(this->getModel(), trueStates, *targetStates, &infinityStates); + } else { + storm::utility::GraphAnalyzer::performProb1E(this->getModel(), trueStates, *targetStates, &infinityStates); + } + infinityStates.complement(); + + LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states."); + LOG4CPLUS_INFO(logger, "Found " << targetStates->getNumberOfSetBits() << " 'target' states."); + storm::storage::BitVector maybeStates = ~(*targetStates) & ~infinityStates; + LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states."); + + // Create resulting vector. + std::vector* result = new std::vector(this->getModel().getNumberOfStates()); + + // Check whether there are states for which we have to compute the result. + const int maybeStatesSetBitCount = maybeStates.getNumberOfSetBits(); + if (maybeStatesSetBitCount > 0) { + // First, we can eliminate the rows and columns from the original transition probability matrix for states + // whose probabilities are already known. + storm::storage::SparseMatrix* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates, *this->getModel().getNondeterministicChoiceIndices()); + + // Get the "new" nondeterministic choice indices for the submatrix. + std::shared_ptr> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates); + + // Create vector for results for maybe states. + std::vector x(maybeStatesSetBitCount); + + // Prepare the right-hand side of the equation system. For entry i this corresponds to + // the accumulated probability of going from state i to some 'yes' state. + std::vector b(submatrix->getRowCount()); + + if (this->getModel().hasTransitionRewards()) { + // If a transition-based reward model is available, we initialize the right-hand + // side to the vector resulting from summing the rows of the pointwise product + // of the transition probability matrix and the transition reward matrix. + std::vector* pointwiseProductRowSumVector = this->getModel().getTransitionMatrix()->getPointwiseProductRowSumVector(*this->getModel().getTransitionRewardMatrix()); + storm::utility::selectVectorValues(&b, maybeStates, *this->getModel().getNondeterministicChoiceIndices(), *pointwiseProductRowSumVector); + delete pointwiseProductRowSumVector; + + if (this->getModel().hasStateRewards()) { + // If a state-based reward model is also available, we need to add this vector + // as well. As the state reward vector contains entries not just for the states + // that we still consider (i.e. maybeStates), we need to extract these values + // first. + std::vector* subStateRewards = new std::vector(b.size()); + storm::utility::selectVectorValuesRepeatedly(subStateRewards, maybeStates, *this->getModel().getNondeterministicChoiceIndices(), *this->getModel().getStateRewardVector()); + gmm::add(*subStateRewards, b); + delete subStateRewards; + } + } else { + // If only a state-based reward model is available, we take this vector as the + // right-hand side. As the state reward vector contains entries not just for the + // states that we still consider (i.e. maybeStates), we need to extract these values + // first. + storm::utility::selectVectorValuesRepeatedly(&b, maybeStates, *this->getModel().getNondeterministicChoiceIndices(), *this->getModel().getStateRewardVector()); + } + + // Solve the corresponding system of equations. + this->solveEquationSystem(*submatrix, x, b, *subNondeterministicChoiceIndices); + + // Set values of resulting vector according to result. + storm::utility::setVectorValues(result, maybeStates, x); + delete submatrix; + } + + // Set values of resulting vector that are known exactly. + storm::utility::setVectorValues(result, *targetStates, storm::utility::constGetZero()); + storm::utility::setVectorValues(result, infinityStates, storm::utility::constGetInfinity()); + + // Delete temporary storages and return result. + delete targetStates; + return result; + } protected: mutable std::stack minimumOperatorStack; + +private: + virtual void performMatrixVectorMultiplication(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector* summand = nullptr, uint_fast64_t repetitions = 1) const = 0; + + virtual void solveEquationSystem(storm::storage::SparseMatrix const& matrix, std::vector& vector, std::vector const& b, std::vector const& nondeterministicChoiceIndices) const = 0; + + + std::shared_ptr> computeNondeterministicChoiceIndicesForConstraint(storm::storage::BitVector constraint) const { + std::shared_ptr> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); + std::shared_ptr> subNondeterministicChoiceIndices(new std::vector(constraint.getNumberOfSetBits() + 1)); + uint_fast64_t currentRowCount = 0; + uint_fast64_t currentIndexCount = 1; + (*subNondeterministicChoiceIndices)[0] = 0; + for (auto index : constraint) { + (*subNondeterministicChoiceIndices)[currentIndexCount] = currentRowCount + (*nondeterministicChoiceIndices)[index + 1] - (*nondeterministicChoiceIndices)[index]; + currentRowCount += (*nondeterministicChoiceIndices)[index + 1] - (*nondeterministicChoiceIndices)[index]; + ++currentIndexCount; + } + (*subNondeterministicChoiceIndices)[constraint.getNumberOfSetBits()] = currentRowCount; + + return subNondeterministicChoiceIndices; + } }; } //namespace modelChecker diff --git a/test/functional/GmmxxMdpPrctModelCheckerTest.cpp b/test/functional/GmmxxMdpPrctModelCheckerTest.cpp index c2f1b3cac..1fee30acd 100644 --- a/test/functional/GmmxxMdpPrctModelCheckerTest.cpp +++ b/test/functional/GmmxxMdpPrctModelCheckerTest.cpp @@ -90,7 +90,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(mc); - ASSERT_LT(std::abs((*result)[0] - 7.3333272933959960938), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - 7.3333294987678527832), s->get("precision")); delete rewardFormula; delete result; @@ -101,7 +101,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(mc); - ASSERT_LT(std::abs((*result)[0] - 7.3333272933959960938), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - 7.3333294987678527832), s->get("precision")); delete rewardFormula; delete result; @@ -120,7 +120,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(stateRewardModelChecker); - ASSERT_LT(std::abs((*result)[0] - 7.3333272933959960938), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - 7.3333294987678527832), s->get("precision")); delete rewardFormula; delete result; @@ -131,7 +131,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(stateRewardModelChecker); - ASSERT_LT(std::abs((*result)[0] - 7.3333272933959960938), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - 7.3333294987678527832), s->get("precision")); delete rewardFormula; delete result; @@ -150,7 +150,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(stateAndTransitionRewardModelChecker); - ASSERT_LT(std::abs((*result)[0] - (2 * 7.3333272933959960938)), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - (2 * 7.3333294987678527832)), s->get("precision")); delete rewardFormula; delete result; @@ -161,7 +161,7 @@ TEST(GmmxxMdpPrctModelCheckerTest, Dice) { result = rewardFormula->check(stateAndTransitionRewardModelChecker); - ASSERT_LT(std::abs((*result)[0] - (2 * 7.3333272933959960938)), s->get("precision")); + ASSERT_LT(std::abs((*result)[0] - (2 * 7.3333294987678527832)), s->get("precision")); delete rewardFormula; delete result;