Browse Source

All tests for CUDA based TopologicalValueIterationMdpPrctlModelChecker passing on Windows.

Former-commit-id: 68cafa6f84
tempestpy_adaptions
David_Korzeniewski 10 years ago
parent
commit
ea2e616196
  1. 101
      CMakeLists.txt
  2. 64
      cuda/CMakeAlignmentCheck.cpp
  3. 31
      cuda/CMakeFloatAlignmentCheck.cpp
  4. 6
      cuda/kernels/allCudaKernels.h
  5. 0
      cuda/kernels/bandWidth.cu
  6. 0
      cuda/kernels/bandWidth.h
  7. 286
      cuda/kernels/basicAdd.cu
  8. 9
      cuda/kernels/basicAdd.h
  9. 879
      cuda/kernels/basicValueIteration.cu
  10. 119
      cuda/kernels/basicValueIteration.h
  11. 19
      cuda/kernels/cudaForStorm.h
  12. 49
      cuda/kernels/cuspExtension.h
  13. 361
      cuda/kernels/cuspExtensionDouble.h
  14. 375
      cuda/kernels/cuspExtensionFloat.h
  15. 39
      cuda/kernels/kernelSwitchTest.cu
  16. 1
      cuda/kernels/kernelSwitchTest.h
  17. 33
      cuda/kernels/utility.cu
  18. 12
      cuda/kernels/utility.h
  19. 28
      cuda/kernels/version.cu
  20. 16
      cuda/kernels/version.h
  21. 21
      cuda/storm-cudaplugin-config.h.in
  22. 2
      src/solver/NativeNondeterministicLinearEquationSolver.cpp
  23. 24
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp
  24. 38
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h
  25. 9
      src/storage/SparseMatrix.cpp
  26. 12
      src/storage/SparseMatrix.h
  27. 16
      test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

101
CMakeLists.txt

@ -271,17 +271,110 @@ include_directories("${PROJECT_BINARY_DIR}/include")
############################################################# #############################################################
if(ENABLE_CUDA) if(ENABLE_CUDA)
# Test for type alignment
try_run(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/cuda/CMakeAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/cuda/CMakeAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT EQUAL 0)
message(STATUS "StoRM (CudaPlugin) - Result of Type Alignment Check: OK.")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_TYPEALIGNMENT})")
endif()
# Test for Float 64bit Alignment
try_run(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/cuda/CMakeFloatAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test float type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/cuda/CMakeFloatAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 2)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment active.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "define")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 3)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment disabled.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "undef")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Float Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_FLOATALIGNMENT})")
endif()
#
# Make a version file containing the current version from git.
#
include(GetGitRevisionDescription)
git_describe_checkout(STORM_GIT_VERSION_STRING)
# Parse the git Tag into variables
string(REGEX REPLACE "^([0-9]+)\\..*" "\\1" STORM_CUDAPLUGIN_VERSION_MAJOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_MINOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_PATCH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-([0-9]+)\\-.*" "\\1" STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-([a-z0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_HASH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-[a-z0-9]+\\-(.*)" "\\1" STORM_CUDAPLUGIN_VERSION_APPENDIX "${STORM_GIT_VERSION_STRING}")
if ("${STORM_CUDAPLUGIN_VERSION_APPENDIX}" MATCHES "^.*dirty.*$")
set(STORM_CUDAPLUGIN_VERSION_DIRTY 1)
else()
set(STORM_CUDAPLUGIN_VERSION_DIRTY 0)
endif()
message(STATUS "StoRM (CudaPlugin) - Version information: ${STORM_CUDAPLUGIN_VERSION_MAJOR}.${STORM_CUDAPLUGIN_VERSION_MINOR}.${STORM_CUDAPLUGIN_VERSION_PATCH} (${STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD} commits ahead of Tag) build from ${STORM_CUDAPLUGIN_VERSION_HASH} (Dirty: ${STORM_CUDAPLUGIN_VERSION_DIRTY})")
# Configure a header file to pass some of the CMake settings to the source code
configure_file (
"${PROJECT_SOURCE_DIR}/cuda/storm-cudaplugin-config.h.in"
"${PROJECT_BINARY_DIR}/include/storm-cudaplugin-config.h"
)
#create library
find_package(CUDA REQUIRED) find_package(CUDA REQUIRED)
set(CUSP_INCLUDE_DIRS "${PROJECT_SOURCE_DIR}/resources/3rdparty/cusplibrary")
find_package(Cusp REQUIRED)
find_package(Thrust REQUIRED)
set(STORM_CUDA_LIB_NAME "storm-cuda") set(STORM_CUDA_LIB_NAME "storm-cuda")
file(GLOB_RECURSE STORM_CUDA_KERNEL_FILES ${PROJECT_SOURCE_DIR}/cuda/kernels/*.cu) file(GLOB_RECURSE STORM_CUDA_KERNEL_FILES ${PROJECT_SOURCE_DIR}/cuda/kernels/*.cu)
file(GLOB_RECURSE STORM_CUDA_HEADER_FILES ${PROJECT_SOURCE_DIR}/cuda/kernels/*.h)
source_group(kernels FILES ${STORM_CUDA_KERNEL_FILES} ${STORM_CUDA_HEADER_FILES})
include_directories(${PROJECT_SOURCE_DIR}/cuda/kernels/)
#set(CUDA_PROPAGATE_HOST_FLAGS OFF)
set(CUDA_NVCC_FLAGS "-arch=sm_30")
#############################################################
##
## CUSP
##
#############################################################
if(CUSP_FOUND)
include_directories(${CUSP_INCLUDE_DIR})
cuda_include_directories(${CUSP_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found CUSP Version ${CUSP_VERSION} in location ${CUSP_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find CUSP!")
endif()
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
set(CUDA_NVCC_FLAGS "-arch=sm_13")
#############################################################
##
## Thrust
##
#############################################################
if(THRUST_FOUND)
include_directories(${THRUST_INCLUDE_DIR})
cuda_include_directories(${THRUST_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found Thrust Version ${THRUST_VERSION} in location ${THRUST_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find Thrust! Check your CUDA installation.")
endif()
include_directories(${CUDA_INCLUDE_DIRS})
include_directories(${ADDITIONAL_INCLUDE_DIRS})
cuda_add_library(${STORM_CUDA_LIB_NAME} cuda_add_library(${STORM_CUDA_LIB_NAME}
${STORM_CUDA_KERNEL_FILES}
${STORM_CUDA_KERNEL_FILES} ${STORM_CUDA_HEADER_FILES}
) )
endif() endif()
@ -485,6 +578,8 @@ if (ENABLE_CUDA)
target_link_libraries(storm ${STORM_CUDA_LIB_NAME}) target_link_libraries(storm ${STORM_CUDA_LIB_NAME})
target_link_libraries(storm-functional-tests ${STORM_CUDA_LIB_NAME}) target_link_libraries(storm-functional-tests ${STORM_CUDA_LIB_NAME})
target_link_libraries(storm-performance-tests ${STORM_CUDA_LIB_NAME}) target_link_libraries(storm-performance-tests ${STORM_CUDA_LIB_NAME})
include_directories("${PROJECT_SOURCE_DIR}/cuda/kernels/")
endif(ENABLE_CUDA) endif(ENABLE_CUDA)
############################################################# #############################################################

64
cuda/CMakeAlignmentCheck.cpp

@ -0,0 +1,64 @@
/*
* This is component of StoRM - Cuda Plugin to check whether type alignment matches the assumptions done while optimizing the code.
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
template <typename IndexType, typename ValueType>
int checkForAlignmentOfPairTypes(size_t containerSize, IndexType const firstValue, ValueType const secondValue) {
std::vector<std::pair<IndexType, ValueType>>* myVector = new std::vector<std::pair<IndexType, ValueType>>();
for (size_t i = 0; i < containerSize; ++i) {
myVector->push_back(std::make_pair(firstValue, secondValue));
}
size_t myVectorSize = myVector->size();
IndexType* firstStart = &(myVector->at(0).first);
IndexType* firstEnd = &(myVector->at(myVectorSize - 1).first);
ValueType* secondStart = &(myVector->at(0).second);
ValueType* secondEnd = &(myVector->at(myVectorSize - 1).second);
size_t startOffset = reinterpret_cast<size_t>(secondStart) - reinterpret_cast<size_t>(firstStart);
size_t endOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(firstEnd);
size_t firstOffset = reinterpret_cast<size_t>(firstEnd) - reinterpret_cast<size_t>(firstStart);
size_t secondOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(secondStart);
delete myVector;
myVector = nullptr;
if (myVectorSize != containerSize) {
return -2;
}
// Check for alignment:
// Requirement is that the pairs are aligned like: first, second, first, second, first, second, ...
if (sizeof(IndexType) != sizeof(ValueType)) {
return -3;
}
if (startOffset != sizeof(IndexType)) {
return -4;
}
if (endOffset != sizeof(IndexType)) {
return -5;
}
if (firstOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -6;
}
if (secondOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -7;
}
return 0;
}
int main(int argc, char* argv[]) {
int result = 0;
result = checkForAlignmentOfPairTypes<uint_fast64_t, double>(CONTAINER_SIZE, 42, 3.14);
if (result != 0) {
return result;
}
return 0;
}

31
cuda/CMakeFloatAlignmentCheck.cpp

@ -0,0 +1,31 @@
/*
* This is component of StoRM - Cuda Plugin to check whether a pair of uint_fast64_t and float gets auto-aligned to match 64bit boundaries
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
int main(int argc, char* argv[]) {
int result = 0;
std::vector<std::pair<uint_fast64_t, float>> myVector;
for (size_t i = 0; i < CONTAINER_SIZE; ++i) {
myVector.push_back(std::make_pair(i, 42.12345f * i));
}
char* firstUintPointer = reinterpret_cast<char*>(&(myVector.at(0).first));
char* secondUintPointer = reinterpret_cast<char*>(&(myVector.at(1).first));
ptrdiff_t uintDiff = secondUintPointer - firstUintPointer;
if (uintDiff == (2 * sizeof(uint_fast64_t))) {
result = 2;
} else if (uintDiff == (sizeof(uint_fast64_t) + sizeof(float))) {
result = 3;
} else {
result = -5;
}
return result;
}

6
cuda/kernels/allCudaKernels.h

@ -0,0 +1,6 @@
#include "utility.h"
#include "bandWidth.h"
#include "basicAdd.h"
#include "kernelSwitchTest.h"
#include "basicValueIteration.h"
#include "version.h"

0
cuda/kernels/bandWidth.cu

0
cuda/kernels/bandWidth.h

286
cuda/kernels/basicAdd.cu

@ -0,0 +1,286 @@
#include <cuda.h>
#include <stdlib.h>
#include <stdio.h>
#include <chrono>
#include <iostream>
__global__ void cuda_kernel_basicAdd(int a, int b, int *c) {
*c = a + b;
}
__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Fused Multiply Add:
// A * B + C => D
/*
*Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
*ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
*Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
*des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
*Threads, der die Funktion gerade ausführt.
*/
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
D[i] = A[i] * B[i] + C[i];
}
}
__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
// Fused Multiply Add:
// A * B + C => D
// Layout:
// A B C D A B C D A B C D
int i = blockDim.x * blockIdx.x + threadIdx.x;
if ((i*M) < N) {
for (int j = i*M; j < i*M + M; ++j) {
A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
}
}
}
extern "C" int cuda_basicAdd(int a, int b) {
int c = 0;
int *dev_c;
cudaMalloc((void**)&dev_c, sizeof(int));
cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
//printf("%d + %d + 42 is %d\n", a, b, c);
cudaFree(dev_c);
return c;
}
void cpp_cuda_bandwidthTest(int entryCount, int N) {
// Size of the Arrays
size_t arraySize = entryCount * sizeof(int);
int* deviceIntArray;
int* hostIntArray = new int[arraySize];
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
delete[] hostIntArray;
return;
}
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
delete[] hostIntArray;
return;
}
}
auto end_time = std::chrono::high_resolution_clock::now();
auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
delete[] hostIntArray;
return;
}
// Prepare data
for (int i = 0; i < N; ++i) {
hostIntArray[i] = i * 333 + 123;
}
// Copy data TO device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
// Copy data FROM device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
}
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Size of the Arrays
size_t arraySize = N * sizeof(int);
int* deviceIntArrayA;
int* deviceIntArrayB;
int* deviceIntArrayC;
int* deviceIntArrayD;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc2!\n");
cudaFree(deviceIntArrayA);
return;
}
if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc3!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
return;
}
if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc4!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
return;
}
// Copy data TO device
if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
// Copy data FROM device
if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Free memory on device
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
}
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
// Size of the Arrays
size_t arraySize = N * sizeof(int) * 4;
int* deviceIntArrayA;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
#define ONFAILFREE0() do { } while(0)
#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
// Copy data TO device
CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}*/
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
// Copy data FROM device
if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}
// Free memory on device
if (cudaFree(deviceIntArrayA) != cudaSuccess) {
printf("Error in cudaFree!\n");
return;
}
}
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
for (int i = 0; i < N; ++i) {
D[i] = A[i] * B[i] + C[i];
}
}
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
for (int i = 0; i < N; i += 4) {
A[i+3] = A[i] * A[i+1] + A[i+2];
}
}

9
cuda/kernels/basicAdd.h

@ -0,0 +1,9 @@
extern "C" int cuda_basicAdd(int a, int b);
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M);
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N);
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N);
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N);
void cpp_cuda_bandwidthTest(int entryCount, int N);

879
cuda/kernels/basicValueIteration.cu

@ -0,0 +1,879 @@
#include "basicValueIteration.h"
#define CUSP_USE_TEXTURE_MEMORY
#include <iostream>
#include <chrono>
#include <cuda_runtime.h>
#include "cusparse_v2.h"
#include "utility.h"
#include "cuspExtension.h"
#include <thrust/transform.h>
#include <thrust/device_ptr.h>
#include <thrust/functional.h>
#include "storm-cudaplugin-config.h"
#ifdef DEBUG
#define CUDA_CHECK_ALL_ERRORS() do { cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) { std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ") in Line " << __LINE__ << std::endl; } if (errAsync != cudaSuccess) { std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ") in Line " << __LINE__ << std::endl; } } while(false)
#else
#define CUDA_CHECK_ALL_ERRORS() do {} while (false)
#endif
template<typename T, bool Relative>
struct equalModuloPrecision : public thrust::binary_function<T,T,T>
{
__host__ __device__ T operator()(const T &x, const T &y) const
{
if (Relative) {
if (y == 0) {
return ((x >= 0) ? (x) : (-x));
}
const T result = (x - y) / y;
return ((result >= 0) ? (result) : (-result));
} else {
const T result = (x - y);
return ((result >= 0) ? (result) : (-result));
}
}
};
template<typename IndexType, typename ValueType>
void exploadVector(std::vector<std::pair<IndexType, ValueType>> const& inputVector, std::vector<IndexType>& indexVector, std::vector<ValueType>& valueVector) {
indexVector.reserve(inputVector.size());
valueVector.reserve(inputVector.size());
for (size_t i = 0; i < inputVector.size(); ++i) {
indexVector.push_back(inputVector.at(i).first);
valueVector.push_back(inputVector.at(i).second);
}
}
// TEMPLATE VERSION
template <bool Minimize, bool Relative, typename IndexType, typename ValueType>
bool basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, double const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//std::vector<IndexType> matrixColumnIndices;
//std::vector<ValueType> matrixValues;
//exploadVector<IndexType, ValueType>(columnIndicesAndValues, matrixColumnIndices, matrixValues);
bool errorOccured = false;
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_mvReduce" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
bool converged = false;
iterationCount = 0;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE true
#else
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE false
#endif
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixColCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Copy all data as floats are expanded to 64bits :/
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the xSwap to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixColCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
// Data is on device, start Kernel
while (!converged && iterationCount < maxIterationCount) { // In a sub-area since transfer of control via label evades initialization
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult);
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
// Check for convergence
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount);
thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
converged = (maxX < precision);
++iterationCount;
// Swap pointers, device_x always contains the most current result
std::swap(device_x, device_xSwap);
}
if (!converged && (iterationCount == maxIterationCount)) {
iterationCount = 0;
errorOccured = true;
}
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl;
#endif
// Get x back from the device
cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_x = nullptr;
}
if (device_xSwap != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_xSwap);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_xSwap = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_b = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_multiplyResult = nullptr;
}
if (device_nondeterministicChoiceIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_nondeterministicChoiceIndices = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
return !errorOccured;
}
template <typename IndexType, typename ValueType>
void basicValueIteration_spmv(uint_fast64_t const matrixColCount, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>> const& columnIndicesAndValues, std::vector<ValueType> const& x, std::vector<ValueType>& b) {
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_multiplyResult = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_spmv" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
#endif
// Get result back from the device
cudaCopyResult = cudaMemcpy(b.data(), device_multiplyResult, sizeof(ValueType) * matrixRowCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
}
device_multiplyResult = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
}
template <typename ValueType>
void basicValueIteration_addVectorsInplace(std::vector<ValueType>& a, std::vector<ValueType> const& b) {
ValueType* device_a = nullptr;
ValueType* device_b = nullptr;
const size_t vectorSize = std::max(a.size(), b.size());
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_a), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector a, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_a, a.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector a, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::device_ptr<ValueType> devicePtrThrust_a(device_a);
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::transform(devicePtrThrust_a, devicePtrThrust_a + vectorSize, devicePtrThrust_b, devicePtrThrust_a, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(a.data(), device_a, sizeof(ValueType) * vectorSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_a != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_a);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector a, Error Code " << cudaFreeResult << "." << std::endl;
}
device_a = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
}
device_b = nullptr;
}
}
template <typename IndexType, typename ValueType, bool Minimize>
void basicValueIteration_reduceGroupedVector(std::vector<ValueType> const& groupedVector, std::vector<IndexType> const& grouping, std::vector<ValueType>& targetVector) {
ValueType* device_groupedVector = nullptr;
IndexType* device_grouping = nullptr;
ValueType* device_target = nullptr;
const size_t groupedSize = groupedVector.size();
const size_t groupingSize = grouping.size();
const size_t targetSize = targetVector.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_groupedVector), sizeof(ValueType) * groupedSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector groupedVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_grouping), sizeof(IndexType) * groupingSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector grouping, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_target), sizeof(ValueType) * targetSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector targetVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_groupedVector, groupedVector.data(), sizeof(ValueType) * groupedSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector groupedVector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_grouping, grouping.data(), sizeof(IndexType) * groupingSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector grouping, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(groupingSize - 1, groupedSize, device_grouping, device_target, device_groupedVector);
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(targetVector.data(), device_target, sizeof(ValueType) * targetSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_groupedVector != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_groupedVector);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector groupedVector, Error Code " << cudaFreeResult << "." << std::endl;
}
device_groupedVector = nullptr;
}
if (device_grouping != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_grouping);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector grouping, Error Code " << cudaFreeResult << "." << std::endl;
}
device_grouping = nullptr;
}
if (device_target != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_target);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector target, Error Code " << cudaFreeResult << "." << std::endl;
}
device_target = nullptr;
}
}
template <typename ValueType, bool Relative>
void basicValueIteration_equalModuloPrecision(std::vector<ValueType> const& x, std::vector<ValueType> const& y, ValueType& maxElement) {
ValueType* device_x = nullptr;
ValueType* device_y = nullptr;
const size_t vectorSize = x.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_y), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector y, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_y, y.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector y, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_y(device_y);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x + vectorSize, devicePtrThrust_y, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
maxElement = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x + vectorSize, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// All code related to freeing memory and clearing up the device
cleanup:
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_y != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_y);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector y, Error Code " << cudaFreeResult << "." << std::endl;
}
device_y = nullptr;
}
}
/*
* Declare and implement all exported functions for these Kernels here
*
*/
void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b) {
basicValueIteration_spmv<uint_fast64_t, double>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b) {
basicValueIteration_addVectorsInplace<double>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, false>(x, y, maxElement);
}
// Float
void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b) {
basicValueIteration_spmv<uint_fast64_t, float>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b) {
basicValueIteration_addVectorsInplace<float>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, false>(x, y, maxElement);
}
bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(double);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}
size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(float);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}

119
cuda/kernels/basicValueIteration.h

@ -0,0 +1,119 @@
#ifndef STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#define STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#include <cstdint>
#include <vector>
#include <utility>
// Library exports
#include "cudaForStorm.h"
/* Helper declaration to cope with new internal format */
#ifndef STORM_STORAGE_SPARSEMATRIX_H_
namespace storm {
namespace storage {
template<typename IndexType, typename ValueType>
class MatrixEntry {
public:
typedef IndexType index_type;
typedef ValueType value_type;
/*!
* Constructs a matrix entry with the given column and value.
*
* @param column The column of the matrix entry.
* @param value The value of the matrix entry.
*/
MatrixEntry(index_type column, value_type value);
/*!
* Move-constructs the matrix entry fro the given column-value pair.
*
* @param pair The column-value pair from which to move-construct the matrix entry.
*/
MatrixEntry(std::pair<index_type, value_type>&& pair);
MatrixEntry();
MatrixEntry(MatrixEntry const& other);
MatrixEntry& operator=(MatrixEntry const& other);
#ifndef WINDOWS
MatrixEntry(MatrixEntry&& other);
MatrixEntry& operator=(MatrixEntry&& other);
#endif
/*!
* Retrieves the column of the matrix entry.
*
* @return The column of the matrix entry.
*/
index_type const& getColumn() const;
/*!
* Sets the column of the current entry.
*
* @param column The column to set for this entry.
*/
void setColumn(index_type const& column);
/*!
* Retrieves the value of the matrix entry.
*
* @return The value of the matrix entry.
*/
value_type const& getValue() const;
/*!
* Sets the value of the entry in the matrix.
*
* @param value The value that is to be set for this entry.
*/
void setValue(value_type const& value);
/*!
* Retrieves a pair of column and value that characterizes this entry.
*
* @return A column-value pair that characterizes this entry.
*/
std::pair<index_type, value_type> const& getColumnValuePair() const;
/*!
* Multiplies the entry with the given factor and returns the result.
*
* @param factor The factor with which to multiply the entry.
*/
MatrixEntry operator*(value_type factor) const;
template<typename IndexTypePrime, typename ValueTypePrime>
friend std::ostream& operator<<(std::ostream& out, MatrixEntry<IndexTypePrime, ValueTypePrime> const& entry);
private:
// The actual matrix entry.
std::pair<index_type, value_type> entry;
};
}
}
#endif
size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b);
void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b);
void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b);
void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b);
void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
#endif // STORM_CUDAFORSTORM_BASICVALUEITERATION_H_

19
cuda/kernels/cudaForStorm.h

@ -0,0 +1,19 @@
#ifndef STORM_CUDAFORSTORM_CUDAFORSTORM_H_
#define STORM_CUDAFORSTORM_CUDAFORSTORM_H_
/*
* List of exported functions in this library
*/
// TopologicalValueIteration
#include "basicValueIteration.h"
// Utility Functions
#include "utility.h"
// Version Information
#include "version.h"
#endif // STORM_CUDAFORSTORM_CUDAFORSTORM_H_

49
cuda/kernels/cuspExtension.h

@ -0,0 +1,49 @@
#pragma once
#include "cuspExtensionFloat.h"
#include "cuspExtensionDouble.h"
namespace cusp {
namespace detail {
namespace device {
template <typename ValueType>
void storm_cuda_opt_spmv_csr_vector(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const ValueType * matrixColumnIndicesAndValues, const ValueType* x, ValueType* y) {
//
throw;
}
template <>
void storm_cuda_opt_spmv_csr_vector<double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y) {
storm_cuda_opt_spmv_csr_vector_double(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <>
void storm_cuda_opt_spmv_csr_vector<float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y) {
storm_cuda_opt_spmv_csr_vector_float(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <bool Minimize, typename ValueType>
void storm_cuda_opt_vector_reduce(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, ValueType * x, const ValueType * y) {
//
throw;
}
template <>
void storm_cuda_opt_vector_reduce<true, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<true, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

361
cuda/kernels/cuspExtensionDouble.h

@ -0,0 +1,361 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* Changes have been made for 1) different input format, 2) the sum calculation and 3) the group-reduce algorithm
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ matrixRowIndices, const double * __restrict__ matrixColumnIndicesAndValues, const double * __restrict__ x, double * __restrict__ y)
{
__shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
double sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ nondeterministicChoiceIndices, double * __restrict__ x, const double * __restrict__ y, const double minMaxInitializer)
{
__shared__ volatile double sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
double localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
double __minMaxInitializer = -std::numeric_limits<double>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<double>::max();
}
const double minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_double<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_double<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_double<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_double<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_double<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

375
cuda/kernels/cuspExtensionFloat.h

@ -0,0 +1,375 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* As this is mostly copy & paste, the original license still applies.
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
#include "storm-cudaplugin-config.h"
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float * x, float * y)
{
__shared__ volatile float sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
float sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y, const float minMaxInitializer)
{
__shared__ volatile float sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
float localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
float __minMaxInitializer = -std::numeric_limits<float>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<float>::max();
}
const float minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_float<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_float<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_float<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_float<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_float<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

39
cuda/kernels/kernelSwitchTest.cu

@ -0,0 +1,39 @@
#include <iostream>
#include <chrono>
__global__ void cuda_kernel_kernelSwitchTest(int const * const A, int * const B) {
*B = *A;
}
void kernelSwitchTest(size_t N) {
int* deviceIntA;
int* deviceIntB;
if (cudaMalloc((void**)&deviceIntA, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
if (cudaMalloc((void**)&deviceIntB, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
cuda_kernel_kernelSwitchTest<<<1,1>>>(deviceIntA, deviceIntB);
}
auto end_time = std::chrono::high_resolution_clock::now();
std::cout << "Switching the Kernel " << N << " times took " << std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() << "micros" << std::endl;
std::cout << "Resulting in " << (std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() / ((double)(N))) << "Microseconds per Kernel Switch" << std::endl;
// Free memory on device
if (cudaFree(deviceIntA) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
if (cudaFree(deviceIntB) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
}

1
cuda/kernels/kernelSwitchTest.h

@ -0,0 +1 @@
void kernelSwitchTest(size_t N);

33
cuda/kernels/utility.cu

@ -0,0 +1,33 @@
#include "utility.h"
#include <cuda_runtime.h>
size_t getFreeCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return freeMemory;
}
size_t getTotalCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return totalMemory;
}
bool resetCudaDevice() {
cudaError_t result = cudaDeviceReset();
return (result == cudaSuccess);
}
int getRuntimeCudaVersion() {
int result = -1;
cudaError_t errorResult = cudaRuntimeGetVersion(&result);
if (errorResult != cudaSuccess) {
return -1;
}
return result;
}

12
cuda/kernels/utility.h

@ -0,0 +1,12 @@
#ifndef STORM_CUDAFORSTORM_UTILITY_H_
#define STORM_CUDAFORSTORM_UTILITY_H_
// Library exports
#include "cudaForStorm.h"
size_t getFreeCudaMemory();
size_t getTotalCudaMemory();
bool resetCudaDevice();
int getRuntimeCudaVersion();
#endif // STORM_CUDAFORSTORM_UTILITY_H_

28
cuda/kernels/version.cu

@ -0,0 +1,28 @@
#include "version.h"
#include "storm-cudaplugin-config.h"
size_t getStormCudaPluginVersionMajor() {
return STORM_CUDAPLUGIN_VERSION_MAJOR;
}
size_t getStormCudaPluginVersionMinor() {
return STORM_CUDAPLUGIN_VERSION_MINOR;
}
size_t getStormCudaPluginVersionPatch() {
return STORM_CUDAPLUGIN_VERSION_PATCH;
}
size_t getStormCudaPluginVersionCommitsAhead() {
return STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD;
}
const char* getStormCudaPluginVersionHash() {
static const std::string versionHash = STORM_CUDAPLUGIN_VERSION_HASH;
return versionHash.c_str();
}
bool getStormCudaPluginVersionIsDirty() {
return ((STORM_CUDAPLUGIN_VERSION_DIRTY) != 0);
}

16
cuda/kernels/version.h

@ -0,0 +1,16 @@
#ifndef STORM_CUDAFORSTORM_VERSION_H_
#define STORM_CUDAFORSTORM_VERSION_H_
// Library exports
#include "cudaForStorm.h"
#include <string>
size_t getStormCudaPluginVersionMajor();
size_t getStormCudaPluginVersionMinor();
size_t getStormCudaPluginVersionPatch();
size_t getStormCudaPluginVersionCommitsAhead();
const char* getStormCudaPluginVersionHash();
bool getStormCudaPluginVersionIsDirty();
#endif // STORM_CUDAFORSTORM_VERSION_H_

21
cuda/storm-cudaplugin-config.h.in

@ -0,0 +1,21 @@
/*
* StoRM - Build-in Options
*
* This file is parsed by CMake during makefile generation
*/
#ifndef STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
#define STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
// Version Information
#define STORM_CUDAPLUGIN_VERSION_MAJOR @STORM_CUDAPLUGIN_VERSION_MAJOR@ // The major version of StoRM
#define STORM_CUDAPLUGIN_VERSION_MINOR @STORM_CUDAPLUGIN_VERSION_MINOR@ // The minor version of StoRM
#define STORM_CUDAPLUGIN_VERSION_PATCH @STORM_CUDAPLUGIN_VERSION_PATCH@ // The patch version of StoRM
#define STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD @STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD@ // How many commits passed since the tag was last set
#define STORM_CUDAPLUGIN_VERSION_HASH "@STORM_CUDAPLUGIN_VERSION_HASH@" // The short hash of the git commit this build is bases on
#define STORM_CUDAPLUGIN_VERSION_DIRTY @STORM_CUDAPLUGIN_VERSION_DIRTY@ // 0 iff there no files were modified in the checkout, 1 else
// Whether the size of float in a pair<uint_fast64_t, float> is expanded to 64bit
#@STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF@ STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#endif // STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_

2
src/solver/NativeNondeterministicLinearEquationSolver.cpp

@ -66,7 +66,7 @@ namespace storm {
} }
// Determine whether the method converged. // Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, static_cast<ValueType>(precision), relative);
// Update environment variables. // Update environment variables.
std::swap(currentX, newX); std::swap(currentX, newX);

24
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp

@ -16,7 +16,7 @@
extern log4cplus::Logger logger; extern log4cplus::Logger logger;
#include "storm-config.h" #include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
# include "cudaForStorm.h" # include "cudaForStorm.h"
#endif #endif
@ -84,7 +84,7 @@ namespace storm {
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices(); std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
// Check if the decomposition is necessary // Check if the decomposition is necessary
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
#define __USE_CUDAFORSTORM_OPT true #define __USE_CUDAFORSTORM_OPT true
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(A.getRowCount()), nondeterministicChoiceIndices.size(), static_cast<size_t>(A.getEntryCount())); size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(A.getRowCount()), nondeterministicChoiceIndices.size(), static_cast<size_t>(A.getEntryCount()));
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95); size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
@ -98,7 +98,7 @@ namespace storm {
// Dummy output for SCC Times // Dummy output for SCC Times
//std::cout << "Computing the SCC Decomposition took 0ms" << std::endl; //std::cout << "Computing the SCC Decomposition took 0ms" << std::endl;
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
if (!resetCudaDevice()) { if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver."); LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver."; throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
@ -108,9 +108,9 @@ namespace storm {
bool result = false; bool result = false;
size_t globalIterations = 0; size_t globalIterations = 0;
if (minimize) { if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
result = __basicValueIteration_mvReduce_minimize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
} else { } else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
result = __basicValueIteration_mvReduce_maximize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
} }
LOG4CPLUS_INFO(logger, "Executed " << globalIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU."); LOG4CPLUS_INFO(logger, "Executed " << globalIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
@ -217,7 +217,7 @@ namespace storm {
// For the current SCC, we need to perform value iteration until convergence. // For the current SCC, we need to perform value iteration until convergence.
if (useGpu) { if (useGpu) {
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
if (!resetCudaDevice()) { if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver."); LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver."; throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
@ -230,9 +230,9 @@ namespace storm {
bool result = false; bool result = false;
localIterations = 0; localIterations = 0;
if (minimize) { if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
result = __basicValueIteration_mvReduce_minimize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else { } else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
result = __basicValueIteration_mvReduce_maximize<uint_fast64_t, ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} }
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU."); LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
@ -284,7 +284,7 @@ namespace storm {
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher // TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated. // running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative); // converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, static_cast<ValueType>(this->precision), this->relative);
// Update environment variables. // Update environment variables.
std::swap(currentX, swap); std::swap(currentX, swap);
@ -332,7 +332,7 @@ namespace storm {
std::vector<std::pair<bool, storm::storage::StateBlock>> std::vector<std::pair<bool, storm::storage::StateBlock>>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const { TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const {
std::vector<std::pair<bool, storm::storage::StateBlock>> result; std::vector<std::pair<bool, storm::storage::StateBlock>> result;
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
// 95% to have a bit of padding // 95% to have a bit of padding
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95); size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
size_t lastResultIndex = 0; size_t lastResultIndex = 0;
@ -395,7 +395,7 @@ namespace storm {
} }
std::sort(tempGroups.begin(), tempGroups.end()); std::sort(tempGroups.begin(), tempGroups.end());
} }
result.push_back(std::make_pair(true, storm::storage::StateBlock(boost::container::ordered_unique_range, tempGroups.cbegin(), tempGroups.cend())));
result.push_back(std::make_pair(true, storm::storage::StateBlock(tempGroups.cbegin(), tempGroups.cend())));
} else { } else {
// Only one group, copy construct. // Only one group, copy construct.
result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]])))); result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]]))));
@ -449,7 +449,7 @@ namespace storm {
} }
std::sort(tempGroups.begin(), tempGroups.end()); std::sort(tempGroups.begin(), tempGroups.end());
} }
result.push_back(std::make_pair(true, storm::storage::StateBlock(boost::container::ordered_unique_range, tempGroups.cbegin(), tempGroups.cend())));
result.push_back(std::make_pair(true, storm::storage::StateBlock(tempGroups.cbegin(), tempGroups.cend())));
} }
else { else {
// Only one group, copy construct. // Only one group, copy construct.

38
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h

@ -4,13 +4,15 @@
#include "src/solver/NativeNondeterministicLinearEquationSolver.h" #include "src/solver/NativeNondeterministicLinearEquationSolver.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h" #include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/storage/SparseMatrix.h" #include "src/storage/SparseMatrix.h"
#include "src/exceptions/NotImplementedException.h"
#include "src/exceptions/NotSupportedException.h"
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "storm-config.h" #include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
# include "cudaForStorm.h"
#ifdef STORM_HAVE_CUDA
#include "cudaForStorm.h"
#endif #endif
namespace storm { namespace storm {
@ -49,46 +51,46 @@ namespace storm {
}; };
template <typename IndexType, typename ValueType> template <typename IndexType, typename ValueType>
bool __basicValueIteration_mvReduce_uint64_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<IndexType, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
bool __basicValueIteration_mvReduce_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<IndexType, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
// //
throw;
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Unsupported template arguments.");
} }
template <> template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<uint_fast64_t, double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
inline bool __basicValueIteration_mvReduce_minimize<uint_fast64_t, double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDA
return basicValueIteration_mvReduce_uint64_double_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); return basicValueIteration_mvReduce_uint64_double_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else #else
throw;
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "StoRM is compiled without CUDA support.");
#endif #endif
} }
template <> template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<uint_fast64_t, float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
inline bool __basicValueIteration_mvReduce_minimize<uint_fast64_t, float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDA
return basicValueIteration_mvReduce_uint64_float_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); return basicValueIteration_mvReduce_uint64_float_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else #else
throw;
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "StoRM is compiled without CUDA support.");
#endif #endif
} }
template <typename IndexType, typename ValueType> template <typename IndexType, typename ValueType>
bool __basicValueIteration_mvReduce_uint64_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<IndexType, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
bool __basicValueIteration_mvReduce_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<IndexType, ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
// //
throw;
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Unsupported template arguments.");
} }
template <> template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<uint_fast64_t, double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
inline bool __basicValueIteration_mvReduce_maximize<uint_fast64_t, double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDA
return basicValueIteration_mvReduce_uint64_double_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); return basicValueIteration_mvReduce_uint64_double_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else #else
throw;
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "StoRM is compiled without CUDA support.");
#endif #endif
} }
template <> template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<uint_fast64_t, float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
inline bool __basicValueIteration_mvReduce_maximize<uint_fast64_t, float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<uint_fast64_t, float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDA
return basicValueIteration_mvReduce_uint64_float_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount); return basicValueIteration_mvReduce_uint64_float_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else #else
throw;
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "StoRM is compiled without CUDA support.");
#endif #endif
} }
} // namespace solver } // namespace solver

9
src/storage/SparseMatrix.cpp

@ -351,6 +351,15 @@ namespace storm {
return entryCount; return entryCount;
} }
template<typename T>
uint_fast64_t SparseMatrix<T>::getRowGroupEntryCount(uint_fast64_t const group) const {
uint_fast64_t result = 0;
for (uint_fast64_t row = this->getRowGroupIndices()[group]; row < this->getRowGroupIndices()[group + 1]; ++row) {
result += (this->rowIndications[row + 1] - this->rowIndications[row]);
}
return result;
}
template<typename ValueType> template<typename ValueType>
typename SparseMatrix<ValueType>::index_type SparseMatrix<ValueType>::getNonzeroEntryCount() const { typename SparseMatrix<ValueType>::index_type SparseMatrix<ValueType>::getNonzeroEntryCount() const {
return nonzeroEntryCount; return nonzeroEntryCount;

12
src/storage/SparseMatrix.h

@ -23,6 +23,10 @@ namespace storm {
class EigenAdapter; class EigenAdapter;
class StormAdapter; class StormAdapter;
} }
namespace solver {
template<typename T>
class TopologicalValueIterationNondeterministicLinearEquationSolver;
}
} }
namespace storm { namespace storm {
@ -273,6 +277,7 @@ namespace storm {
friend class storm::adapters::GmmxxAdapter; friend class storm::adapters::GmmxxAdapter;
friend class storm::adapters::EigenAdapter; friend class storm::adapters::EigenAdapter;
friend class storm::adapters::StormAdapter; friend class storm::adapters::StormAdapter;
friend class storm::solver::TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>;
typedef uint_fast64_t index_type; typedef uint_fast64_t index_type;
typedef ValueType value_type; typedef ValueType value_type;
@ -454,6 +459,13 @@ namespace storm {
*/ */
index_type getEntryCount() const; index_type getEntryCount() const;
/*!
* Returns the number of entries in the given row group of the matrix.
*
* @return The number of entries in the given row group of the matrix.
*/
uint_fast64_t getRowGroupEntryCount(uint_fast64_t const group) const;
/*! /*!
* Returns the number of nonzero entries in the matrix. * Returns the number of nonzero entries in the matrix.
* *

16
test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

@ -110,7 +110,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = mc.check(*rewardFormula); result = mc.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -126,7 +126,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = mc.check(*rewardFormula); result = mc.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -147,7 +147,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = stateRewardModelChecker.check(*rewardFormula); result = stateRewardModelChecker.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -162,7 +162,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = stateRewardModelChecker.check(*rewardFormula); result = stateRewardModelChecker.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 7.333329499),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -183,7 +183,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = stateAndTransitionRewardModelChecker.check(*rewardFormula); result = stateAndTransitionRewardModelChecker.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 14.666658998), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 14.666658998),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -198,7 +198,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
result = stateAndTransitionRewardModelChecker.check(*rewardFormula); result = stateAndTransitionRewardModelChecker.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 14.666658998), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 14.666658998),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -266,7 +266,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, AsynchronousLeader) {
result = mc.check(*rewardFormula); result = mc.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 4.285689611), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 4.285689611),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else
@ -282,7 +282,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, AsynchronousLeader) {
result = mc.check(*rewardFormula); result = mc.check(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
#ifdef STORM_HAVE_CUDA
ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 4.285689611), ASSERT_LT(std::abs(result->asExplicitQuantitativeCheckResult<double>()[0] - 4.285689611),
storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision()); storm::settings::topologicalValueIterationEquationSolverSettings().getPrecision());
#else #else

Loading…
Cancel
Save