Browse Source

1. Ensured that when doing policy iteration the underlying solver is at least as precise as the minmax solver.

2. Fix for SolverGuarantees: They are only established if bounds were actually given.
tempestpy_adaptions
TimQu 7 years ago
parent
commit
e46f4e154b
  1. 15
      src/storm/environment/solver/SolverEnvironment.cpp
  2. 2
      src/storm/environment/solver/SolverEnvironment.h
  3. 28
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp
  4. 25
      src/storm/solver/NativeLinearEquationSolver.cpp
  5. 21
      src/storm/solver/SymbolicMinMaxLinearEquationSolver.cpp

15
src/storm/environment/solver/SolverEnvironment.cpp

@ -87,6 +87,21 @@ namespace storm {
return linearEquationSolverTypeSetFromDefault;
}
boost::optional<storm::RationalNumber> SolverEnvironment::getPrecisionOfCurrentLinearEquationSolver() const {
switch (getLinearEquationSolverType()) {
case storm::solver::EquationSolverType::Gmmxx:
return gmmxx().getPrecision();
case storm::solver::EquationSolverType::Eigen:
return eigen().getPrecision();
case storm::solver::EquationSolverType::Native:
return native().getPrecision();
case storm::solver::EquationSolverType::Elimination:
return boost::none;
default:
STORM_LOG_ASSERT(false, "The selected solver type is unknown.");
}
}
void SolverEnvironment::setLinearEquationSolverPrecision(storm::RationalNumber const& value) {
STORM_LOG_ASSERT(getLinearEquationSolverType() == storm::solver::EquationSolverType::Native ||
getLinearEquationSolverType() == storm::solver::EquationSolverType::Gmmxx ||

2
src/storm/environment/solver/SolverEnvironment.h

@ -1,6 +1,7 @@
#pragma once
#include<memory>
#include <boost/optional.hpp>
#include "storm/environment/Environment.h"
#include "storm/environment/SubEnvironment.h"
@ -40,6 +41,7 @@ namespace storm {
void setLinearEquationSolverType(storm::solver::EquationSolverType const& value);
bool isLinearEquationSolverTypeSetFromDefaultValue() const;
boost::optional<storm::RationalNumber> getPrecisionOfCurrentLinearEquationSolver() const;
void setLinearEquationSolverPrecision(storm::RationalNumber const& value);
void setLinearEquationSolverRelativeTerminationCriterion(bool value);

28
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -5,6 +5,7 @@
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/utility/KwekMehlhorn.h"
#include "storm/utility/NumberTraits.h"
#include "storm/utility/vector.h"
#include "storm/utility/macros.h"
@ -52,7 +53,7 @@ namespace storm {
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::internalSolveEquations(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
bool result = false;
switch (getMethod(env, std::is_same<ValueType, storm::RationalNumber>::value)) {
switch (getMethod(env, storm::NumberTraits<ValueType>::IsExact)) {
case MinMaxMethod::ValueIteration:
if (env.solver().isForceSoundness()) {
result = solveEquationsSoundValueIteration(env, dir, x, b);
@ -112,13 +113,20 @@ namespace storm {
// The solver that we will use throughout the procedure.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver;
// The linear equation solver should be at least as precise as this solver
std::unique_ptr<storm::Environment> environmentOfSolver;
boost::optional<storm::RationalNumber> precOfSolver = env.solver().getPrecisionOfCurrentLinearEquationSolver();
if (!storm::NumberTraits<ValueType>::IsExact && precOfSolver && precOfSolver.get() > env.solver().minMax().getPrecision()) {
environmentOfSolver = std::make_unique<storm::Environment>(env);
environmentOfSolver->solver().setLinearEquationSolverPrecision(env.solver().minMax().getPrecision());
}
SolverStatus status = SolverStatus::InProgress;
uint64_t iterations = 0;
this->startMeasureProgress();
do {
// Solve the equation system for the 'DTMC'.
solveInducedEquationSystem(env, solver, scheduler, x, subB, b);
solveInducedEquationSystem(environmentOfSolver ? *environmentOfSolver : env, solver, scheduler, x, subB, b);
// Go through the multiplication result and see whether we can improve any of the choices.
bool schedulerImproved = false;
@ -189,7 +197,7 @@ namespace storm {
// Start by copying the requirements of the linear equation solver.
MinMaxLinearEquationSolverRequirements requirements(this->linearEquationSolverFactory->getRequirements(env));
auto method = getMethod(env, std::is_same<ValueType, storm::RationalNumber>::value);
auto method = getMethod(env, storm::NumberTraits<ValueType>::IsExact);
if (method == MinMaxMethod::ValueIteration) {
if (env.solver().isForceSoundness()) {
// Interval iteration requires a unique solution and lower+upper bounds
@ -295,7 +303,15 @@ namespace storm {
if (this->hasInitialScheduler()) {
// Solve the equation system induced by the initial scheduler.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> linEqSolver;
solveInducedEquationSystem(env, linEqSolver, this->getInitialScheduler(), x, *auxiliaryRowGroupVector, b);
// The linear equation solver should be at least as precise as this solver
std::unique_ptr<storm::Environment> environmentOfSolver;
boost::optional<storm::RationalNumber> precOfSolver = env.solver().getPrecisionOfCurrentLinearEquationSolver();
if (!storm::NumberTraits<ValueType>::IsExact && precOfSolver && precOfSolver.get() > env.solver().minMax().getPrecision()) {
environmentOfSolver = std::make_unique<storm::Environment>(env);
environmentOfSolver->solver().setLinearEquationSolverPrecision(env.solver().minMax().getPrecision());
}
solveInducedEquationSystem(environmentOfSolver ? *environmentOfSolver : env, linEqSolver, this->getInitialScheduler(), x, *auxiliaryRowGroupVector, b);
// If we were given an initial scheduler and are maximizing (minimizing), our current solution becomes
// always less-or-equal (greater-or-equal) than the actual solution.
guarantee = maximize(dir) ? SolverGuarantee::LessOrEqual : SolverGuarantee::GreaterOrEqual;
@ -308,10 +324,10 @@ namespace storm {
guarantee = SolverGuarantee::GreaterOrEqual;
}
} else if (this->hasCustomTerminationCondition()) {
if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::LessOrEqual)) {
if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::LessOrEqual) && this->hasLowerBound()) {
this->createLowerBoundsVector(x);
guarantee = SolverGuarantee::LessOrEqual;
} else if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::GreaterOrEqual)) {
} else if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::GreaterOrEqual) && this->hasUpperBound()) {
this->createUpperBoundsVector(x);
guarantee = SolverGuarantee::GreaterOrEqual;
}

25
src/storm/solver/NativeLinearEquationSolver.cpp

@ -4,6 +4,7 @@
#include "storm/utility/ConstantsComparator.h"
#include "storm/utility/KwekMehlhorn.h"
#include "storm/utility/NumberTraits.h"
#include "storm/utility/constants.h"
#include "storm/utility/vector.h"
#include "storm/exceptions/InvalidStateException.h"
@ -312,7 +313,7 @@ namespace storm {
// Now check for termination.
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, precision, relative);
terminate = this->terminateNow(*currentX, SolverGuarantee::LessOrEqual);
terminate = this->terminateNow(*currentX, guarantee);
// Potentially show progress.
this->showProgressIterative(iterations);
@ -332,7 +333,6 @@ namespace storm {
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsPower(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_THROW(this->hasLowerBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (Power)");
// Prepare the solution vectors.
@ -340,12 +340,22 @@ namespace storm {
this->cachedRowVector = std::make_unique<std::vector<ValueType>>(getMatrixRowCount());
}
std::vector<ValueType>* currentX = &x;
SolverGuarantee guarantee = SolverGuarantee::None;
if (this->hasCustomTerminationCondition()) {
if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::LessOrEqual) && this->hasLowerBound()) {
this->createLowerBoundsVector(*currentX);
guarantee = SolverGuarantee::LessOrEqual;
} else if (this->getTerminationCondition().requiresGuarantee(SolverGuarantee::GreaterOrEqual) && this->hasUpperBound()) {
this->createUpperBoundsVector(*currentX);
guarantee = SolverGuarantee::GreaterOrEqual;
}
}
std::vector<ValueType>* newX = this->cachedRowVector.get();
// Forward call to power iteration implementation.
this->startMeasureProgress();
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().native().getPrecision());
PowerIterationResult result = this->performPowerIteration(currentX, newX, b, precision, env.solver().native().getRelativeTerminationCriterion(), SolverGuarantee::LessOrEqual, 0, env.solver().native().getMaximalNumberOfIterations(), env.solver().native().getPowerMethodMultiplicationStyle());
PowerIterationResult result = this->performPowerIteration(currentX, newX, b, precision, env.solver().native().getRelativeTerminationCriterion(), guarantee, 0, env.solver().native().getMaximalNumberOfIterations(), env.solver().native().getPowerMethodMultiplicationStyle());
// Swap the result in place.
if (currentX == this->cachedRowVector.get()) {
@ -387,11 +397,10 @@ namespace storm {
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::solveEquationsSoundPower(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_THROW(this->hasLowerBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_THROW(this->hasLowerBound(), storm::exceptions::UnmetRequirementException, "Solver requires lower bound, but none was given.");
STORM_LOG_THROW(this->hasUpperBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with NativeLinearEquationSolver (SoundPower)");
std::vector<ValueType>* lowerX = &x;
this->createLowerBoundsVector(*lowerX);
this->createUpperBoundsVector(this->cachedRowVector, this->getMatrixRowCount());
@ -833,7 +842,7 @@ namespace storm {
template<typename ValueType>
bool NativeLinearEquationSolver<ValueType>::internalSolveEquations(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
switch(getMethod(env, std::is_same<ValueType, storm::RationalNumber>::value)) {
switch(getMethod(env, storm::NumberTraits<ValueType>::IsExact)) {
case NativeLinearEquationSolverMethod::SOR:
return this->solveEquationsSOR(env, x, b, storm::utility::convertNumber<ValueType>(env.solver().native().getSorOmega()));
case NativeLinearEquationSolverMethod::GaussSeidel:
@ -911,7 +920,7 @@ namespace storm {
template<typename ValueType>
LinearEquationSolverProblemFormat NativeLinearEquationSolver<ValueType>::getEquationProblemFormat(Environment const& env) const {
auto method = getMethod(env, std::is_same<ValueType, storm::RationalNumber>::value);
auto method = getMethod(env, storm::NumberTraits<ValueType>::IsExact);
if (method == NativeLinearEquationSolverMethod::Power || method == NativeLinearEquationSolverMethod::RationalSearch) {
return LinearEquationSolverProblemFormat::FixedPointSystem;
} else {
@ -922,7 +931,7 @@ namespace storm {
template<typename ValueType>
LinearEquationSolverRequirements NativeLinearEquationSolver<ValueType>::getRequirements(Environment const& env) const {
LinearEquationSolverRequirements requirements;
auto method = getMethod(env, std::is_same<ValueType, storm::RationalNumber>::value);
auto method = getMethod(env, storm::NumberTraits<ValueType>::IsExact);
if (method == NativeLinearEquationSolverMethod::Power && env.solver().isForceSoundness()) {
requirements.requireBounds();
} else if (method == NativeLinearEquationSolverMethod::RationalSearch) {

21
src/storm/solver/SymbolicMinMaxLinearEquationSolver.cpp

@ -241,7 +241,14 @@ namespace storm {
} else {
// If we were given an initial scheduler, we take its solution as the starting point.
if (this->hasInitialScheduler()) {
localX = solveEquationsWithScheduler(env, this->getInitialScheduler(), x, b);
// The linear equation solver should be at least as precise as this solver
std::unique_ptr<storm::Environment> environmentOfSolver;
boost::optional<storm::RationalNumber> precOfSolver = env.solver().getPrecisionOfCurrentLinearEquationSolver();
if (!storm::NumberTraits<ValueType>::IsExact && precOfSolver && precOfSolver.get() > env.solver().minMax().getPrecision()) {
environmentOfSolver = std::make_unique<storm::Environment>(env);
environmentOfSolver->solver().setLinearEquationSolverPrecision(env.solver().minMax().getPrecision());
}
localX = solveEquationsWithScheduler(environmentOfSolver ? *environmentOfSolver : env, this->getInitialScheduler(), x, b);
} else {
localX = this->getLowerBoundsVector();
}
@ -301,13 +308,21 @@ namespace storm {
storm::dd::Bdd<DdType> scheduler = this->hasInitialScheduler() ? this->getInitialScheduler() : this->A.sumAbstract(this->columnMetaVariables).maxAbstractRepresentative(this->choiceVariables);
// Initialize linear equation solver.
std::unique_ptr<SymbolicLinearEquationSolver<DdType, ValueType>> linearEquationSolver = linearEquationSolverFactory->create(env, this->allRows, this->rowMetaVariables, this->columnMetaVariables, this->rowColumnMetaVariablePairs);
// It should be at least as precise as this solver.
std::unique_ptr<storm::Environment> environmentOfSolver;
boost::optional<storm::RationalNumber> precOfSolver = env.solver().getPrecisionOfCurrentLinearEquationSolver();
if (!storm::NumberTraits<ValueType>::IsExact && precOfSolver && precOfSolver.get() > env.solver().minMax().getPrecision()) {
environmentOfSolver = std::make_unique<storm::Environment>(env);
environmentOfSolver->solver().setLinearEquationSolverPrecision(env.solver().minMax().getPrecision());
}
std::unique_ptr<SymbolicLinearEquationSolver<DdType, ValueType>> linearEquationSolver = linearEquationSolverFactory->create(environmentOfSolver ? *environmentOfSolver : env, this->allRows, this->rowMetaVariables, this->columnMetaVariables, this->rowColumnMetaVariablePairs);
this->forwardBounds(*linearEquationSolver);
// Iteratively solve and improve the scheduler.
uint64_t maxIter = env.solver().minMax().getMaximalNumberOfIterations();
while (!converged && iterations < maxIter) {
storm::dd::Add<DdType, ValueType> schedulerX = solveEquationsWithScheduler(env, *linearEquationSolver, scheduler, currentSolution, b, diagonal);
storm::dd::Add<DdType, ValueType> schedulerX = solveEquationsWithScheduler(environmentOfSolver ? *environmentOfSolver : env, *linearEquationSolver, scheduler, currentSolution, b, diagonal);
// Policy improvement step.
storm::dd::Add<DdType, ValueType> choiceValues = this->A.multiplyMatrix(schedulerX.swapVariables(this->rowColumnMetaVariablePairs), this->columnMetaVariables) + b;

Loading…
Cancel
Save