Browse Source

moving from internal reference to pointer in StandardMinMax solver

equipped MinMax solvers with default constructors
tempestpy_adaptions
dehnert 7 years ago
parent
commit
e278c3ef69
  1. 54
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp
  2. 1
      src/storm/solver/IterativeMinMaxLinearEquationSolver.h
  3. 22
      src/storm/solver/LpMinMaxLinearEquationSolver.cpp
  4. 1
      src/storm/solver/LpMinMaxLinearEquationSolver.h
  5. 15
      src/storm/solver/StandardMinMaxLinearEquationSolver.cpp
  6. 4
      src/storm/solver/StandardMinMaxLinearEquationSolver.h

54
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -103,18 +103,18 @@ namespace storm {
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsPolicyIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Create the initial scheduler.
std::vector<storm::storage::sparse::state_type> scheduler = this->hasSchedulerHint() ? this->choicesHint.get() : std::vector<storm::storage::sparse::state_type>(this->A.getRowGroupCount());
std::vector<storm::storage::sparse::state_type> scheduler = this->hasSchedulerHint() ? this->choicesHint.get() : std::vector<storm::storage::sparse::state_type>(this->A->getRowGroupCount());
// Get a vector for storing the right-hand side of the inner equation system.
if(!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A.getRowGroupCount());
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
std::vector<ValueType>& subB = *auxiliaryRowGroupVector;
// Resolve the nondeterminism according to the current scheduler.
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(scheduler, true);
storm::storage::SparseMatrix<ValueType> submatrix = this->A->selectRowsFromRowGroups(scheduler, true);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A.getRowGroupIndices(), b);
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A->getRowGroupIndices(), b);
// Create a solver that we will use throughout the procedure. We will modify the matrix in each iteration.
auto solver = this->linearEquationSolverFactory->create(std::move(submatrix));
@ -137,17 +137,17 @@ namespace storm {
// Go through the multiplication result and see whether we can improve any of the choices.
bool schedulerImproved = false;
for (uint_fast64_t group = 0; group < this->A.getRowGroupCount(); ++group) {
for (uint_fast64_t group = 0; group < this->A->getRowGroupCount(); ++group) {
uint_fast64_t currentChoice = scheduler[group];
for (uint_fast64_t choice = this->A.getRowGroupIndices()[group]; choice < this->A.getRowGroupIndices()[group + 1]; ++choice) {
for (uint_fast64_t choice = this->A->getRowGroupIndices()[group]; choice < this->A->getRowGroupIndices()[group + 1]; ++choice) {
// If the choice is the currently selected one, we can skip it.
if (choice - this->A.getRowGroupIndices()[group] == currentChoice) {
if (choice - this->A->getRowGroupIndices()[group] == currentChoice) {
continue;
}
// Create the value of the choice.
ValueType choiceValue = storm::utility::zero<ValueType>();
for (auto const& entry : this->A.getRow(choice)) {
for (auto const& entry : this->A->getRow(choice)) {
choiceValue += entry.getValue() * x[entry.getColumn()];
}
choiceValue += b[choice];
@ -157,7 +157,7 @@ namespace storm {
// only changing the scheduler if the values are not equal (modulo precision) would make this unsound.
if (valueImproved(dir, x[group], choiceValue)) {
schedulerImproved = true;
scheduler[group] = choice - this->A.getRowGroupIndices()[group];
scheduler[group] = choice - this->A->getRowGroupIndices()[group];
x[group] = std::move(choiceValue);
}
}
@ -168,9 +168,9 @@ namespace storm {
status = Status::Converged;
} else {
// Update the scheduler and the solver.
submatrix = this->A.selectRowsFromRowGroups(scheduler, true);
submatrix = this->A->selectRowsFromRowGroups(scheduler, true);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A.getRowGroupIndices(), b);
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A->getRowGroupIndices(), b);
solver->setMatrix(std::move(submatrix));
}
@ -215,24 +215,24 @@ namespace storm {
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsValueIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if(!this->linEqSolverA) {
this->linEqSolverA = this->linearEquationSolverFactory->create(this->A);
this->linEqSolverA = this->linearEquationSolverFactory->create(*this->A);
this->linEqSolverA->setCachingEnabled(true);
}
if (!this->auxiliaryRowVector) {
this->auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(this->A.getRowCount());
this->auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(this->A->getRowCount());
}
std::vector<ValueType>& multiplyResult = *this->auxiliaryRowVector;
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A.getRowGroupCount());
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
if (this->hasSchedulerHint()) {
// Resolve the nondeterminism according to the scheduler hint
storm::storage::SparseMatrix<ValueType> submatrix = this->A.selectRowsFromRowGroups(this->choicesHint.get(), true);
storm::storage::SparseMatrix<ValueType> submatrix = this->A->selectRowsFromRowGroups(this->choicesHint.get(), true);
submatrix.convertToEquationSystem();
storm::utility::vector::selectVectorValues<ValueType>(*auxiliaryRowGroupVector, this->choicesHint.get(), this->A.getRowGroupIndices(), b);
storm::utility::vector::selectVectorValues<ValueType>(*auxiliaryRowGroupVector, this->choicesHint.get(), this->A->getRowGroupIndices(), b);
// Solve the resulting equation system.
// Note that the linEqSolver might consider a slightly different interpretation of "equalModuloPrecision". Hence, we iteratively increase its precision.
@ -256,7 +256,7 @@ namespace storm {
this->linEqSolverA->multiply(*currentX, &b, multiplyResult);
// Reduce the vector x' by applying min/max for all non-deterministic choices.
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, *newX, this->A.getRowGroupIndices());
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, *newX, this->A->getRowGroupIndices());
// Determine whether the method converged.
if (storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, this->getSettings().getPrecision(), this->getSettings().getRelativeTerminationCriterion())) {
@ -284,9 +284,9 @@ namespace storm {
if (iterations==0) {
this->linEqSolverA->multiply(x, &b, multiplyResult);
}
this->schedulerChoices = std::vector<uint_fast64_t>(this->A.getRowGroupCount());
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
// Reduce the multiplyResult and keep track of the choices made
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, x, this->A.getRowGroupIndices(), &this->schedulerChoices.get());
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, x, this->A->getRowGroupIndices(), &this->schedulerChoices.get());
}
if (!this->isCachingEnabled()) {
@ -298,7 +298,7 @@ namespace storm {
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsAcyclic(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
uint64_t numGroups = this->A.getRowGroupCount();
uint64_t numGroups = this->A->getRowGroupCount();
// Allocate memory for the scheduler (if required)
if (this->isTrackSchedulerSet()) {
@ -323,7 +323,7 @@ namespace storm {
}
}
auto transposedMatrix = this->A.transpose(true);
auto transposedMatrix = this->A->transpose(true);
// We store the groups that have already been processed, i.e., the groups for which x[group] was already set to the correct value.
storm::storage::BitVector processedGroups(numGroups, false);
@ -338,7 +338,7 @@ namespace storm {
// Check if the candidate row group has an unprocessed successor
bool hasUnprocessedSuccessor = false;
for (auto const& entry : this->A.getRowGroup(candidate)) {
for (auto const& entry : this->A->getRowGroup(candidate)) {
if (!processedGroups.get(entry.getColumn())) {
hasUnprocessedSuccessor = true;
break;
@ -375,17 +375,17 @@ namespace storm {
template<typename ValueType>
void IterativeMinMaxLinearEquationSolver<ValueType>::computeOptimalValueForRowGroup(uint_fast64_t group, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, uint_fast64_t* choice) const {
uint64_t row = this->A.getRowGroupIndices()[group];
uint64_t groupEnd = this->A.getRowGroupIndices()[group + 1];
uint64_t row = this->A->getRowGroupIndices()[group];
uint64_t groupEnd = this->A->getRowGroupIndices()[group + 1];
assert(row != groupEnd);
auto bIt = b.begin() + row;
ValueType& xi = x[group];
xi = this->A.multiplyRowWithVector(row, x) + *bIt;
xi = this->A->multiplyRowWithVector(row, x) + *bIt;
uint64_t optimalRow = row;
for (++row, ++bIt; row < groupEnd; ++row, ++bIt) {
ValueType choiceVal = this->A.multiplyRowWithVector(row, x) + *bIt;
ValueType choiceVal = this->A->multiplyRowWithVector(row, x) + *bIt;
if (minimize(dir)) {
if (choiceVal < xi) {
xi = choiceVal;
@ -399,7 +399,7 @@ namespace storm {
}
}
if (choice != nullptr) {
*choice = optimalRow - this->A.getRowGroupIndices()[group];
*choice = optimalRow - this->A->getRowGroupIndices()[group];
}
}

1
src/storm/solver/IterativeMinMaxLinearEquationSolver.h

@ -36,6 +36,7 @@ namespace storm {
template<typename ValueType>
class IterativeMinMaxLinearEquationSolver : public StandardMinMaxLinearEquationSolver<ValueType> {
public:
IterativeMinMaxLinearEquationSolver() = default;
IterativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory, IterativeMinMaxLinearEquationSolverSettings<ValueType> const& settings = IterativeMinMaxLinearEquationSolverSettings<ValueType>());
IterativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory, IterativeMinMaxLinearEquationSolverSettings<ValueType> const& settings = IterativeMinMaxLinearEquationSolverSettings<ValueType>());

22
src/storm/solver/LpMinMaxLinearEquationSolver.cpp

@ -28,8 +28,8 @@ namespace storm {
// Create a variable for each row group
std::vector<storm::expressions::Variable> variables;
variables.reserve(this->A.getRowGroupCount());
for (uint64_t rowGroup = 0; rowGroup < this->A.getRowGroupCount(); ++rowGroup) {
variables.reserve(this->A->getRowGroupCount());
for (uint64_t rowGroup = 0; rowGroup < this->A->getRowGroupCount(); ++rowGroup) {
if (this->lowerBound) {
if (this->upperBound) {
variables.push_back(solver->addBoundedContinuousVariable("x" + std::to_string(rowGroup), this->lowerBound.get(), this->upperBound.get(), storm::utility::one<ValueType>()));
@ -47,10 +47,10 @@ namespace storm {
solver->update();
// Add a constraint for each row
for (uint64_t rowGroup = 0; rowGroup < this->A.getRowGroupCount(); ++rowGroup) {
for (uint64_t row = this->A.getRowGroupIndices()[rowGroup]; row < this->A.getRowGroupIndices()[rowGroup + 1]; ++row) {
for (uint64_t rowGroup = 0; rowGroup < this->A->getRowGroupCount(); ++rowGroup) {
for (uint64_t row = this->A->getRowGroupIndices()[rowGroup]; row < this->A->getRowGroupIndices()[rowGroup + 1]; ++row) {
storm::expressions::Expression rowConstraint = solver->getConstant(b[row]);
for (auto const& entry : this->A.getRow(row)) {
for (auto const& entry : this->A->getRow(row)) {
rowConstraint = rowConstraint + (solver->getConstant(entry.getValue()) * variables[entry.getColumn()].getExpression());
}
if (minimize(dir)) {
@ -78,14 +78,14 @@ namespace storm {
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A.getRowGroupCount());
for (uint64_t rowGroup = 0; rowGroup < this->A.getRowGroupCount(); ++rowGroup) {
uint64_t row = this->A.getRowGroupIndices()[rowGroup];
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
for (uint64_t rowGroup = 0; rowGroup < this->A->getRowGroupCount(); ++rowGroup) {
uint64_t row = this->A->getRowGroupIndices()[rowGroup];
uint64_t optimalChoiceIndex = 0;
uint64_t currChoice = 0;
ValueType optimalGroupValue = this->A.multiplyRowWithVector(row, x) + b[row];
for (++row, ++currChoice; row < this->A.getRowGroupIndices()[rowGroup + 1]; ++row, ++currChoice) {
ValueType rowValue = this->A.multiplyRowWithVector(row, x) + b[row];
ValueType optimalGroupValue = this->A->multiplyRowWithVector(row, x) + b[row];
for (++row, ++currChoice; row < this->A->getRowGroupIndices()[rowGroup + 1]; ++row, ++currChoice) {
ValueType rowValue = this->A->multiplyRowWithVector(row, x) + b[row];
if ((minimize(dir) && rowValue < optimalGroupValue) || (maximize(dir) && rowValue > optimalGroupValue)) {
optimalGroupValue = rowValue;
optimalChoiceIndex = currChoice;

1
src/storm/solver/LpMinMaxLinearEquationSolver.h

@ -10,6 +10,7 @@ namespace storm {
template<typename ValueType>
class LpMinMaxLinearEquationSolver : public StandardMinMaxLinearEquationSolver<ValueType> {
public:
LpMinMaxLinearEquationSolver() = default;
LpMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory, std::unique_ptr<storm::utility::solver::LpSolverFactory<ValueType>>&& lpSolverFactory);
LpMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory, std::unique_ptr<storm::utility::solver::LpSolverFactory<ValueType>>&& lpSolverFactory);

15
src/storm/solver/StandardMinMaxLinearEquationSolver.cpp

@ -15,24 +15,29 @@ namespace storm {
namespace solver {
template<typename ValueType>
StandardMinMaxLinearEquationSolver<ValueType>::StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : linearEquationSolverFactory(std::move(linearEquationSolverFactory)), localA(nullptr), A(A) {
StandardMinMaxLinearEquationSolver<ValueType>::StandardMinMaxLinearEquationSolver() : A(nullptr) {
// Intentionally left empty.
}
template<typename ValueType>
StandardMinMaxLinearEquationSolver<ValueType>::StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : linearEquationSolverFactory(std::move(linearEquationSolverFactory)), localA(std::make_unique<storm::storage::SparseMatrix<ValueType>>(std::move(A))), A(*localA) {
StandardMinMaxLinearEquationSolver<ValueType>::StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : linearEquationSolverFactory(std::move(linearEquationSolverFactory)), localA(nullptr), A(&A) {
// Intentionally left empty.
}
template<typename ValueType>
StandardMinMaxLinearEquationSolver<ValueType>::StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : linearEquationSolverFactory(std::move(linearEquationSolverFactory)), localA(std::make_unique<storm::storage::SparseMatrix<ValueType>>(std::move(A))), A(localA.get()) {
// Intentionally left empty.
}
template<typename ValueType>
void StandardMinMaxLinearEquationSolver<ValueType>::repeatedMultiply(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const* b, uint_fast64_t n) const {
if (!linEqSolverA) {
linEqSolverA = linearEquationSolverFactory->create(A);
linEqSolverA = linearEquationSolverFactory->create(*A);
linEqSolverA->setCachingEnabled(true);
}
if (!auxiliaryRowVector) {
auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(A.getRowCount());
auxiliaryRowVector = std::make_unique<std::vector<ValueType>>(A->getRowCount());
}
std::vector<ValueType>& multiplyResult = *auxiliaryRowVector;
@ -41,7 +46,7 @@ namespace storm {
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, x, this->A.getRowGroupIndices());
storm::utility::vector::reduceVectorMinOrMax(dir, multiplyResult, x, this->A->getRowGroupIndices());
}
if (!this->isCachingEnabled()) {

4
src/storm/solver/StandardMinMaxLinearEquationSolver.h

@ -9,6 +9,8 @@ namespace storm {
template<typename ValueType>
class StandardMinMaxLinearEquationSolver : public MinMaxLinearEquationSolver<ValueType> {
public:
StandardMinMaxLinearEquationSolver();
StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);
StandardMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);
@ -33,7 +35,7 @@ namespace storm {
// A reference to the original sparse matrix given to this solver. If the solver takes posession of the matrix
// the reference refers to localA.
storm::storage::SparseMatrix<ValueType> const& A;
storm::storage::SparseMatrix<ValueType> const* A;
};

Loading…
Cancel
Save