Browse Source

kSP: accept matrix-vector input; various other stuff

tempestpy_adaptions
Tom Janson 8 years ago
parent
commit
daa76f7eb4
  1. 118
      src/utility/shortestPaths.cpp
  2. 120
      src/utility/shortestPaths.h
  3. 34
      src/utility/shortestPaths.md
  4. 32
      test/functional/utility/KSPTest.cpp

118
src/utility/shortestPaths.cpp

@ -1,20 +1,30 @@
#include <queue>
#include <set>
#include <string>
#include "macros.h"
#include "shortestPaths.h"
#include "graph.h"
// FIXME: I've accidentally used k=0 *twice* now without realizing that k>=1 is required!
// Accessing zero should trigger a warning!
// (Also, did I document this? I think so, somewhere. I went with k>=1 because
// that's what the KSP paper used, but in retrospect k>=0 seems more intuitive ...)
namespace storm {
namespace utility {
namespace ksp {
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model,
state_list_t const& targets) : model(model), targets(targets) {
// FIXME: does this create a copy? I don't need one, so I should avoid that
transitionMatrix = model->getTransitionMatrix();
numStates = model->getNumberOfStates() + 1; // one more for meta-target
metaTarget = numStates - 1; // first unused state number
targetSet = std::unordered_set<state_t>(targets.begin(), targets.end());
ShortestPathsGenerator<T>::ShortestPathsGenerator(storage::SparseMatrix<T> const& transitionMatrix,
std::unordered_map<state_t, T> const& targetProbMap,
BitVector const& initialStates,
MatrixFormat matrixFormat) :
transitionMatrix(transitionMatrix),
numStates(transitionMatrix.getColumnCount() + 1), // one more for meta-target
metaTarget(transitionMatrix.getColumnCount()), // first unused state index
initialStates(initialStates),
targetProbMap(targetProbMap),
matrixFormat(matrixFormat) {
computePredecessors();
@ -29,20 +39,30 @@ namespace storm {
candidatePaths.resize(numStates);
}
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(storage::SparseMatrix<T> const& transitionMatrix,
std::vector<T> const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat)
: ShortestPathsGenerator<T>(transitionMatrix, vectorToMap(targetProbVector), initialStates, matrixFormat) {}
// extracts the relevant info from the model and delegates to ctor above
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, BitVector const& targetBV)
: ShortestPathsGenerator<T>(model.getTransitionMatrix(), allProbOneMap(targetBV), model.getInitialStates(), MatrixFormat::straight) {}
// several alternative ways to specify the targets are provided,
// each converts the targets and delegates to the ctor above
// I admit it's kind of ugly, but actually pretty convenient (and I've wanted to try C++11 delegation)
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model,
state_t singleTarget) : ShortestPathsGenerator<T>(model, std::vector<state_t>{singleTarget}) {}
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, state_t singleTarget)
: ShortestPathsGenerator<T>(model, std::vector<state_t>{singleTarget}) {}
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model,
storage::BitVector const& targetBV) : ShortestPathsGenerator<T>(model, bitvectorToList(targetBV)) {}
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, std::vector<state_t> const& targetList)
: ShortestPathsGenerator<T>(model, BitVector(model.getNumberOfStates(), targetList)) {}
template <typename T>
ShortestPathsGenerator<T>::ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model,
std::string const& targetLabel) : ShortestPathsGenerator<T>(model, bitvectorToList(model->getStates(targetLabel))) {}
ShortestPathsGenerator<T>::ShortestPathsGenerator(Model const& model, std::string const& targetLabel)
: ShortestPathsGenerator<T>(model, model.getStates(targetLabel)) {}
template <typename T>
T ShortestPathsGenerator<T>::getDistance(unsigned long k) {
@ -51,9 +71,9 @@ namespace storm {
}
template <typename T>
storage::BitVector ShortestPathsGenerator<T>::getStates(unsigned long k) {
BitVector ShortestPathsGenerator<T>::getStates(unsigned long k) {
computeKSP(k);
storage::BitVector stateSet(numStates - 1, false); // no meta-target
BitVector stateSet(numStates - 1, false); // no meta-target
Path<T> currentPath = kShortestPaths[metaTarget][k - 1];
boost::optional<state_t> maybePredecessor = currentPath.predecessorNode;
@ -71,10 +91,10 @@ namespace storm {
}
template <typename T>
state_list_t ShortestPathsGenerator<T>::getPathAsList(unsigned long k) {
std::vector<state_t> ShortestPathsGenerator<T>::getPathAsList(unsigned long k) {
computeKSP(k);
state_list_t backToFrontList;
std::vector<state_t> backToFrontList;
Path<T> currentPath = kShortestPaths[metaTarget][k - 1];
boost::optional<state_t> maybePredecessor = currentPath.predecessorNode;
@ -100,16 +120,20 @@ namespace storm {
for (state_t i = 0; i < numStates - 1; i++) {
for (auto const& transition : transitionMatrix.getRowGroup(i)) {
// to avoid non-minimal paths, the target states are
// to avoid non-minimal paths, the meta-target-predecessors are
// *not* predecessors of any state but the meta-target
if (std::find(targets.begin(), targets.end(), i) == targets.end()) {
if (!isMetaTargetPredecessor(i)) {
graphPredecessors[transition.getColumn()].push_back(i);
}
}
}
// meta-target has exactly the target states as predecessors
graphPredecessors[metaTarget] = targets;
// meta-target has exactly the meta-target-predecessors as predecessors
// (duh. note that the meta-target-predecessors used to be called target,
// but that's not necessarily true in the matrix/value invocation case)
for (auto targetProbPair : targetProbMap) {
graphPredecessors[metaTarget].push_back(targetProbPair.first);
}
}
template <typename T>
@ -117,8 +141,8 @@ namespace storm {
// the existing Dijkstra isn't working anyway AND
// doesn't fully meet our requirements, so let's roll our own
T inftyDistance = utility::zero<T>();
T zeroDistance = utility::one<T>();
T inftyDistance = zero<T>();
T zeroDistance = one<T>();
shortestPathDistances.resize(numStates, inftyDistance);
shortestPathPredecessors.resize(numStates, boost::optional<state_t>());
@ -126,7 +150,7 @@ namespace storm {
// default comparison on pair actually works fine if distance is the first entry
std::set<std::pair<T, state_t>, std::greater<std::pair<T, state_t>>> dijkstraQueue;
for (state_t initialState : model->getInitialStates()) {
for (state_t initialState : initialStates) {
shortestPathDistances[initialState] = zeroDistance;
dijkstraQueue.emplace(zeroDistance, initialState);
}
@ -135,13 +159,14 @@ namespace storm {
state_t currentNode = (*dijkstraQueue.begin()).second;
dijkstraQueue.erase(dijkstraQueue.begin());
if (targetSet.count(currentNode) == 0) {
if (!isMetaTargetPredecessor(currentNode)) {
// non-target node, treated normally
for (auto const& transition : transitionMatrix.getRowGroup(currentNode)) {
state_t otherNode = transition.getColumn();
// note that distances are probabilities, thus they are multiplied and larger is better
T alternateDistance = shortestPathDistances[currentNode] * transition.getValue();
T alternateDistance = shortestPathDistances[currentNode] * convertDistance(currentNode, otherNode, transition.getValue());
assert(zero<T>() <= alternateDistance <= one<T>()); // FIXME: there is a negative transition! SM gives us a placeholder!
if (alternateDistance > shortestPathDistances[otherNode]) {
shortestPathDistances[otherNode] = alternateDistance;
shortestPathPredecessors[otherNode] = boost::optional<state_t>(currentNode);
@ -149,9 +174,9 @@ namespace storm {
}
}
} else {
// target node has only "virtual edge" (with prob 1) to meta-target
// no multiplication necessary
T alternateDistance = shortestPathDistances[currentNode];
// node only has one "virtual edge" (with prob as per targetProbMap) to meta-target
// FIXME: double check
T alternateDistance = shortestPathDistances[currentNode] * targetProbMap[currentNode];
if (alternateDistance > shortestPathDistances[metaTarget]) {
shortestPathDistances[metaTarget] = alternateDistance;
shortestPathPredecessors[metaTarget] = boost::optional<state_t>(currentNode);
@ -179,7 +204,7 @@ namespace storm {
// BFS in Dijkstra-SP order
std::queue<state_t> bfsQueue;
for (state_t initialState : model->getInitialStates()) {
for (state_t initialState : initialStates) {
bfsQueue.push(initialState);
}
@ -214,27 +239,31 @@ namespace storm {
for (auto const& transition : transitionMatrix.getRowGroup(tailNode)) {
if (transition.getColumn() == headNode) {
return transition.getValue();
return convertDistance(tailNode, headNode, transition.getValue());
}
}
// there is no such edge
// let's disallow that for now, because I'm not expecting it to happen
assert(false);
return utility::zero<T>();
return zero<T>();
} else {
// edge must be "virtual edge" from target state to meta-target
assert(targetSet.count(tailNode) == 1);
return utility::one<T>();
// edge must be "virtual edge" to meta-target
assert(isMetaTargetPredecessor(tailNode));
return targetProbMap.at(tailNode); // FIXME double check
}
}
template <typename T>
void ShortestPathsGenerator<T>::computeNextPath(state_t node, unsigned long k) {
assert(k >= 2); // Dijkstra is used for k=1
assert(kShortestPaths[node].size() == k - 1); // if not, the previous SP must not exist
// TODO: I could extract the candidate generation to make this function more succinct
if (k == 2) {
// Step B.1 in J&M paper
Path<T> shortestPathToNode = kShortestPaths[node][1 - 1]; // never forget index shift :-|
for (state_t predecessor : graphPredecessors[node]) {
@ -254,7 +283,9 @@ namespace storm {
}
}
if (k > 2 || !isInitialState(node)) {
if (not (k == 2 && isInitialState(node))) {
// Steps B.2-5 in J&M paper
// the (k-1)th shortest path (i.e., one better than the one we want to compute)
Path<T> previousShortestPath = kShortestPaths[node][k - 1 - 1]; // oh god, I forgot index shift AGAIN
@ -280,9 +311,10 @@ namespace storm {
};
candidatePaths[node].insert(pathToPredecessorPlusEdge);
}
// else there was no path; TODO: does this need handling?
// else there was no path; TODO: does this need handling? -- yes, but not here (because the step B.1 may have added candidates)
}
// Step B.6 in J&M paper
if (!candidatePaths[node].empty()) {
Path<T> minDistanceCandidate = *(candidatePaths[node].begin());
for (auto path : candidatePaths[node]) {
@ -293,6 +325,9 @@ namespace storm {
candidatePaths[node].erase(std::find(candidatePaths[node].begin(), candidatePaths[node].end(), minDistanceCandidate));
kShortestPaths[node].push_back(minDistanceCandidate);
} else {
// TODO: kSP does not exist. this is handled later, but it would be nice to catch it as early as possble, wouldn't it?
STORM_LOG_TRACE("KSP: no candidates, this will trigger nonexisting ksp after exiting these recursions. TODO: handle here");
}
}
@ -303,9 +338,10 @@ namespace storm {
for (unsigned long nextK = alreadyComputedK + 1; nextK <= k; nextK++) {
computeNextPath(metaTarget, nextK);
if (kShortestPaths[metaTarget].size() < nextK) {
//std::cout << std::endl << "--> DEBUG: Last path: k=" << (nextK - 1) << ":" << std::endl;
//printKShortestPath(metaTarget, nextK - 1);
//std::cout << "---------" << "No other path exists!" << std::endl;
unsigned long lastExistingK = nextK - 1;
STORM_LOG_DEBUG("KSP throws (as expected) due to nonexistence -- maybe this is unhandled and causes the Python interface to segfault?");
STORM_LOG_DEBUG("last existing k-SP has k=" + std::to_string(lastExistingK));
STORM_LOG_DEBUG("maybe this is unhandled and causes the Python interface to segfault?");
throw std::invalid_argument("k-SP does not exist for k=" + std::to_string(k));
}
}

120
src/utility/shortestPaths.h

@ -12,20 +12,22 @@
// for more information about the purpose, design decisions,
// etc., you may consult `shortestPath.md`. - Tom
/*
* TODO:
* - take care of self-loops of target states
* - implement target group
* - think about how to get paths with new nodes, rather than different
* paths over the same set of states (which happens often)
*/
// TODO: test whether using BitVector instead of vector<state_t> is
// faster for storing predecessors etc.
// Now using BitVectors instead of vector<state_t> in the API because
// BitVectors are used throughout Storm to represent a (unordered) list
// of states.
// (Even though both initialStates and targets are probably very sparse.)
namespace storm {
namespace utility {
namespace ksp {
typedef storage::sparse::state_type state_t;
typedef std::vector<state_t> state_list_t;
using state_t = storage::sparse::state_type;
using OrderedStateList = std::vector<state_t>;
using BitVector = storage::BitVector;
// -- helper structs/classes -----------------------------------------------------------------------------
template <typename T>
struct Path {
@ -46,24 +48,39 @@ namespace storm {
}
};
// when using the raw matrix/vector invocation, this enum parameter
// forces the caller to declare whether the matrix has the evil I-P
// format, which requires back-conversion of the entries
enum class MatrixFormat { straight, iMinusP };
// -------------------------------------------------------------------------------------------------------
template <typename T>
class ShortestPathsGenerator {
public:
using Matrix = storage::SparseMatrix<T>;
using StateProbMap = std::unordered_map<state_t, T>;
using Model = models::sparse::Model<T>;
/*!
* Performs precomputations (including meta-target insertion and Dijkstra).
* Modifications are done locally, `model` remains unchanged.
* Target (group) cannot be changed.
*/
// FIXME: this shared_ptr-passing business might be a bad idea
ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model, state_list_t const& targets);
ShortestPathsGenerator(Model const& model, BitVector const& targetBV);
// allow alternative ways of specifying the target,
// all of which will be converted to list and delegated to constructor above
ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model, state_t singleTarget);
ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model, storage::BitVector const& targetBV);
ShortestPathsGenerator(std::shared_ptr<models::sparse::Model<T>> model, std::string const& targetLabel);
// all of which will be converted to BitVector and delegated to constructor above
ShortestPathsGenerator(Model const& model, state_t singleTarget);
ShortestPathsGenerator(Model const& model, std::vector<state_t> const& targetList);
ShortestPathsGenerator(Model const& model, std::string const& targetLabel = "target");
// a further alternative: use transition matrix of maybe-states
// combined with target vector (e.g., the instantiated matrix/vector from SamplingModel);
// in this case separately specifying a target makes no sense
ShortestPathsGenerator(Matrix const& transitionMatrix, std::vector<T> const& targetProbVector, BitVector const& initialStates, MatrixFormat matrixFormat);
ShortestPathsGenerator(Matrix const& maybeTransitionMatrix, StateProbMap const& targetProbMap, BitVector const& initialStates, MatrixFormat matrixFormat);
inline ~ShortestPathsGenerator(){}
@ -87,21 +104,21 @@ namespace storm {
* Computes KSP if not yet computed.
* @throws std::invalid_argument if no such k-shortest path exists
*/
state_list_t getPathAsList(unsigned long k);
OrderedStateList getPathAsList(unsigned long k);
private:
std::shared_ptr<models::sparse::Model<T>> model;
storage::SparseMatrix<T> transitionMatrix;
Matrix const& transitionMatrix; // FIXME: store reference instead (?)
state_t numStates; // includes meta-target, i.e. states in model + 1
state_list_t targets;
std::unordered_set<state_t> targetSet;
state_t metaTarget;
BitVector initialStates;
StateProbMap targetProbMap;
std::vector<state_list_t> graphPredecessors;
MatrixFormat matrixFormat;
std::vector<OrderedStateList> graphPredecessors;
std::vector<boost::optional<state_t>> shortestPathPredecessors;
std::vector<state_list_t> shortestPathSuccessors;
std::vector<OrderedStateList> shortestPathSuccessors;
std::vector<T> shortestPathDistances;
std::vector<std::vector<Path<T>>> kShortestPaths;
@ -159,18 +176,63 @@ namespace storm {
// --- tiny helper fcts ---
inline bool isInitialState(state_t node) const {
auto initialStates = model->getInitialStates();
return find(initialStates.begin(), initialStates.end(), node) != initialStates.end();
}
inline state_list_t bitvectorToList(storage::BitVector const& bv) const {
state_list_t list;
for (state_t state : bv) {
list.push_back(state);
inline bool isMetaTargetPredecessor(state_t node) const {
return targetProbMap.count(node) == 1;
}
// I dislike this. But it is necessary if we want to handle those ugly I-P matrices
inline T convertDistance(state_t tailNode, state_t headNode, T distance) const {
if (matrixFormat == MatrixFormat::straight) {
return distance;
} else {
if (tailNode == headNode) {
// diagonal: 1-p = dist
return one<T>() - distance;
} else {
// non-diag: -p = dist
return zero<T>() - distance;
}
}
}
/*!
* Returns a map where each state of the input BitVector is mapped to 1 (`one<T>`).
*/
inline StateProbMap allProbOneMap(BitVector bitVector) const {
StateProbMap stateProbMap;
for (state_t node : bitVector) {
stateProbMap.emplace(node, one<T>()); // FIXME check rvalue warning (here and below)
}
return stateProbMap;
}
/*!
* Given a vector of probabilities so that the `i`th entry corresponds to the
* probability of state `i`, returns an equivalent map of only the non-zero entries.
*/
inline std::unordered_map<state_t, T> vectorToMap(std::vector<T> probVector) const {
//assert(probVector.size() == numStates); // numStates may not yet be initialized! // still true?
std::unordered_map<state_t, T> stateProbMap;
for (state_t i = 0; i < probVector.size(); i++) {
T probEntry = probVector[i];
// only non-zero entries (i.e. true transitions) are added to the map
if (probEntry != 0) {
assert(0 < probEntry <= 1);
stateProbMap.emplace(i, probEntry);
}
return list;
}
return stateProbMap;
}
// -----------------------
};
}

34
src/utility/shortestPaths.md

@ -39,6 +39,27 @@ target group is required in the constructor. (It would have been possible to
allow for interchangeable target groups, but I don't anticipate that use
case.)
#### Special case: Using Matrix/Vector from SamplingModel
The class has been updated to support the matrix/vector that `SamplingModel`
generates (as an instance of a PDTMC) as input. This is in fact closely
related to the target groups, since it works as follows:
The input is a (sub-stochastic) transition matrix of the maybe-states (only!)
and a vector (again over the maybe-states) with the probabilities to an
implied target state.
This naturally corresponds to having a meta-target, except the probability
of its incoming edges range over $(0,1]$ rather than being $1$.
Thus, applying the term "target group" to the set of states with non-zero
transitions to the meta-target is now misleading[^1], but nevertheless it
should work exactly the same. [Right?]
In terms of implementation, in `getEdgeDistance` as well as in the loop of
the Dijkstra, the "virtual" edges to the meta-target were checked for and
set to probability $1$; this must now be changed to use the probability as
indicated in the `targetProbVector` if this input format is used.
### Minimality of paths
Secondly, we define shortest paths as "minimal" shortest paths in the
following sense: The path may not visit any target state except at the
@ -54,7 +75,7 @@ This is a common feature if the target state is a sink; but we are not
interested in such paths.
(In fact, ideally we'd like to see paths whose node-intersection with all
shorter paths is non-empty (which is an even stronger statement than
shorter paths is non-empty [^2] (which is an even stronger statement than
loop-free-ness of paths), because we want to take a union of those node
sets. But that's a different matter.)
@ -76,11 +97,18 @@ path to some node `u` plus an edge to `t`:
Further, the shortest paths to some node are always computed in order and
without gaps, e.g., the 1, 2, 3-shortest paths to `t` will be computed
before the 4-SP. Thus, we store the SPs in a linked list for each node,
with the k-th entry[^1] being the k-th SP to that node.
with the k-th entry[^3] being the k-th SP to that node.
Thus for an SP as shown above we simply store the predecessor node (`u`)
and the `k`, which allows us to look up the tail of the SP.
By recursively looking up the tail (until it's empty), we reconstruct
the entire path back-to-front.
[^1]: Which due to 0-based indexing has index `k-1`, of course! Damn it.
[^1]: I suppose the correct term would now be "meta-target predecessors".
In fact, I will rename all occurences of `target` in the source to
`metaTargetPredecessors` – clumsy but accurate.
[^2]: (2016-08-20:) Is this correct? Didn't I mean that the path should
contain new nodes, i.e., non-emptiness of
((nodes in path) set-minus (union(nodes in shorter paths)))?
Yeah, I'm pretty sure that's what I meant.
[^3]: Which due to 0-based indexing has index `k-1`, of course! Damn it.

32
test/functional/utility/KSPTest.cpp

@ -25,8 +25,8 @@ std::shared_ptr<storm::models::sparse::Model<double>> buildExampleModel() {
TEST(KSPTest, dijkstra) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
double dist = spg.getDistance(1);
EXPECT_DOUBLE_EQ(0.015859334652581887, dist);
@ -35,8 +35,8 @@ TEST(KSPTest, dijkstra) {
TEST(KSPTest, singleTarget) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
double dist = spg.getDistance(100);
EXPECT_DOUBLE_EQ(1.5231305000339649e-06, dist);
@ -45,8 +45,8 @@ TEST(KSPTest, singleTarget) {
TEST(KSPTest, reentry) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
double dist = spg.getDistance(100);
EXPECT_DOUBLE_EQ(1.5231305000339649e-06, dist);
@ -59,8 +59,8 @@ TEST(KSPTest, reentry) {
TEST(KSPTest, groupTarget) {
auto model = buildExampleModel();
auto groupTarget = storm::utility::ksp::state_list_t{50, 90};
auto spg = storm::utility::ksp::ShortestPathsGenerator<double>(model, groupTarget);
auto groupTarget = std::vector<storm::utility::ksp::state_t>{50, 90};
auto spg = storm::utility::ksp::ShortestPathsGenerator<double>(*model, groupTarget);
// this path should lead to 90
double dist1 = spg.getDistance(8);
@ -78,8 +78,8 @@ TEST(KSPTest, groupTarget) {
TEST(KSPTest, kTooLargeException) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 1;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 1;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
ASSERT_THROW(spg.getDistance(2), std::invalid_argument);
}
@ -87,11 +87,11 @@ TEST(KSPTest, kTooLargeException) {
TEST(KSPTest, kspStateSet) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
storm::storage::BitVector referenceBV(model->getNumberOfStates(), false);
for (auto s : storm::utility::ksp::state_list_t{300, 293, 285, 279, 271, 265, 259, 252, 244, 237, 229, 223, 217, 210, 202, 195, 187, 181, 175, 168, 160, 153, 145, 139, 133, 126, 118, 111, 103, 97, 91, 84, 76, 69, 61, 55, 49, 43, 35, 41, 32, 25, 19, 14, 10, 7, 4, 2, 1, 0}) {
for (auto s : std::vector<storm::utility::ksp::state_t>{300, 293, 285, 279, 271, 265, 259, 252, 244, 237, 229, 223, 217, 210, 202, 195, 187, 181, 175, 168, 160, 153, 145, 139, 133, 126, 118, 111, 103, 97, 91, 84, 76, 69, 61, 55, 49, 43, 35, 41, 32, 25, 19, 14, 10, 7, 4, 2, 1, 0}) {
referenceBV.set(s, true);
}
@ -103,11 +103,11 @@ TEST(KSPTest, kspStateSet) {
TEST(KSPTest, kspPathAsList) {
auto model = buildExampleModel();
storm::storage::sparse::state_type testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(model, testState);
storm::utility::ksp::state_t testState = 300;
storm::utility::ksp::ShortestPathsGenerator<double> spg(*model, testState);
// TODO: use path that actually has a loop or something to make this more interesting
auto reference = storm::utility::ksp::state_list_t{300, 293, 285, 279, 271, 265, 259, 252, 244, 237, 229, 223, 217, 210, 202, 195, 187, 181, 175, 168, 160, 153, 145, 139, 133, 126, 118, 111, 103, 97, 91, 84, 76, 69, 61, 55, 49, 43, 35, 41, 32, 25, 19, 14, 10, 7, 4, 2, 1, 0};
auto reference = storm::utility::ksp::OrderedStateList{300, 293, 285, 279, 271, 265, 259, 252, 244, 237, 229, 223, 217, 210, 202, 195, 187, 181, 175, 168, 160, 153, 145, 139, 133, 126, 118, 111, 103, 97, 91, 84, 76, 69, 61, 55, 49, 43, 35, 41, 32, 25, 19, 14, 10, 7, 4, 2, 1, 0};
auto list = spg.getPathAsList(7);
EXPECT_EQ(list, reference);

Loading…
Cancel
Save