|
|
@ -1,6 +1,17 @@ |
|
|
|
#include <storm/utility/ConstantsComparator.h>
|
|
|
|
#include "ApproximatePOMDPModelchecker.h"
|
|
|
|
|
|
|
|
#include <boost/algorithm/string.hpp>
|
|
|
|
|
|
|
|
|
|
|
|
#include "storm/utility/ConstantsComparator.h"
|
|
|
|
#include "storm/models/sparse/Dtmc.h"
|
|
|
|
#include "storm/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
|
|
|
|
#include "storm/utility/vector.h"
|
|
|
|
#include "storm/modelchecker/results/CheckResult.h"
|
|
|
|
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
|
|
|
|
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
|
|
|
|
#include "storm/api/properties.h"
|
|
|
|
#include "storm-parsers/api/storm-parsers.h"
|
|
|
|
|
|
|
|
namespace storm { |
|
|
|
namespace pomdp { |
|
|
@ -14,35 +25,42 @@ namespace storm { |
|
|
|
/*std::unique_ptr<POMDPCheckResult>*/ void |
|
|
|
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeReachabilityProbability( |
|
|
|
storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, |
|
|
|
std::set<uint32_t> target_observations, bool min, uint64_t gridResolution) { |
|
|
|
std::set<uint32_t> targetObservations, bool min, uint64_t gridResolution) { |
|
|
|
//TODO add timing
|
|
|
|
uint64_t maxIterations = 100; |
|
|
|
bool finished = false; |
|
|
|
uint64_t iteration = 0; |
|
|
|
|
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> beliefList; |
|
|
|
std::vector<bool> beliefIsTarget; |
|
|
|
uint64_t nextId = 0; |
|
|
|
// Initial belief always has ID 0
|
|
|
|
storm::pomdp::Belief<ValueType> initialBelief = getInitialBelief(pomdp, nextId); |
|
|
|
++nextId; |
|
|
|
beliefList.push_back(initialBelief); |
|
|
|
beliefIsTarget.push_back( |
|
|
|
targetObservations.find(initialBelief.observation) != targetObservations.end()); |
|
|
|
|
|
|
|
|
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> beliefGrid; |
|
|
|
std::vector<bool> beliefIsKnown; |
|
|
|
constructBeliefGrid(pomdp, target_observations, gridResolution, beliefList, beliefGrid, beliefIsKnown, |
|
|
|
constructBeliefGrid(pomdp, targetObservations, gridResolution, beliefList, beliefGrid, beliefIsTarget, |
|
|
|
nextId); |
|
|
|
nextId = beliefList.size(); |
|
|
|
|
|
|
|
// ID -> Value
|
|
|
|
std::map<uint64_t, ValueType> result; |
|
|
|
std::map<uint64_t, ValueType> result_backup; |
|
|
|
// ID -> ActionIndex
|
|
|
|
std::map<uint64_t, uint64_t> chosenActions; |
|
|
|
|
|
|
|
std::vector<std::vector<std::map<uint32_t, ValueType>>> observationProbabilities; |
|
|
|
std::vector<std::vector<std::map<uint32_t, uint64_t>>> nextBelieves; |
|
|
|
// ID -> Observation -> Probability
|
|
|
|
std::map<uint64_t, std::vector<std::map<uint32_t, ValueType>>> observationProbabilities; |
|
|
|
// current ID -> action -> next ID
|
|
|
|
std::map<uint64_t, std::vector<std::map<uint32_t, uint64_t>>> nextBelieves; |
|
|
|
|
|
|
|
for (size_t i = 0; i < beliefGrid.size(); ++i) { |
|
|
|
auto currentBelief = beliefGrid[i]; |
|
|
|
bool isTarget = beliefIsKnown[i]; |
|
|
|
bool isTarget = beliefIsTarget[currentBelief.id]; |
|
|
|
if (isTarget) { |
|
|
|
result.emplace(std::make_pair(currentBelief.id, storm::utility::one<ValueType>())); |
|
|
|
result_backup.emplace(std::make_pair(currentBelief.id, storm::utility::one<ValueType>())); |
|
|
@ -64,6 +82,8 @@ namespace storm { |
|
|
|
uint32_t observation = iter->first; |
|
|
|
actionObservationBelieves[observation] = getBeliefAfterActionAndObservation(pomdp, |
|
|
|
beliefList, |
|
|
|
beliefIsTarget, |
|
|
|
targetObservations, |
|
|
|
currentBelief, |
|
|
|
action, |
|
|
|
observation, |
|
|
@ -73,8 +93,9 @@ namespace storm { |
|
|
|
observationProbabilitiesInAction.push_back(actionObservationProbabilities); |
|
|
|
nextBelievesInAction.push_back(actionObservationBelieves); |
|
|
|
} |
|
|
|
observationProbabilities.push_back(observationProbabilitiesInAction); |
|
|
|
nextBelieves.push_back(nextBelievesInAction); |
|
|
|
observationProbabilities.emplace( |
|
|
|
std::make_pair(currentBelief.id, observationProbabilitiesInAction)); |
|
|
|
nextBelieves.emplace(std::make_pair(currentBelief.id, nextBelievesInAction)); |
|
|
|
} |
|
|
|
} |
|
|
|
// Value Iteration
|
|
|
@ -83,9 +104,9 @@ namespace storm { |
|
|
|
STORM_LOG_DEBUG("Iteration " << iteration + 1); |
|
|
|
bool improvement = false; |
|
|
|
for (size_t i = 0; i < beliefGrid.size(); ++i) { |
|
|
|
bool isTarget = beliefIsKnown[i]; |
|
|
|
if (!isTarget) { |
|
|
|
storm::pomdp::Belief<ValueType> currentBelief = beliefGrid[i]; |
|
|
|
bool isTarget = beliefIsTarget[currentBelief.id]; |
|
|
|
if (!isTarget) { |
|
|
|
// we can take any state with the observation as they have the same number of choices
|
|
|
|
uint64_t numChoices = pomdp.getNumberOfChoices( |
|
|
|
pomdp.getStatesWithObservation(currentBelief.observation).front()); |
|
|
@ -97,17 +118,17 @@ namespace storm { |
|
|
|
|
|
|
|
for (uint64_t action = 0; action < numChoices; ++action) { |
|
|
|
currentValue = storm::utility::zero<ValueType>(); // simply change this for rewards?
|
|
|
|
for (auto iter = observationProbabilities[i][action].begin(); |
|
|
|
iter != observationProbabilities[i][action].end(); ++iter) { |
|
|
|
for (auto iter = observationProbabilities[currentBelief.id][action].begin(); |
|
|
|
iter != observationProbabilities[currentBelief.id][action].end(); ++iter) { |
|
|
|
uint32_t observation = iter->first; |
|
|
|
storm::pomdp::Belief<ValueType> nextBelief = beliefList[nextBelieves[i][action][observation]]; |
|
|
|
storm::pomdp::Belief<ValueType> nextBelief = beliefList[nextBelieves[currentBelief.id][action][observation]]; |
|
|
|
// compute subsimplex and lambdas according to the Lovejoy paper to approximate the next belief
|
|
|
|
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> temp = computeSubSimplexAndLambdas( |
|
|
|
nextBelief.probabilities, gridResolution); |
|
|
|
std::vector<std::vector<ValueType>> subSimplex = temp.first; |
|
|
|
std::vector<ValueType> lambdas = temp.second; |
|
|
|
|
|
|
|
ValueType sum = storm::utility::zero<ValueType>(); |
|
|
|
auto sum = storm::utility::zero<ValueType>(); |
|
|
|
for (size_t j = 0; j < lambdas.size(); ++j) { |
|
|
|
if (lambdas[j] != storm::utility::zero<ValueType>()) { |
|
|
|
sum += lambdas[j] * result_backup.at( |
|
|
@ -117,12 +138,19 @@ namespace storm { |
|
|
|
currentValue += iter->second * sum; |
|
|
|
} |
|
|
|
|
|
|
|
// Update the selected actions
|
|
|
|
// Update the selected actions TODO make this nicer
|
|
|
|
if ((min && cc.isLess(storm::utility::zero<ValueType>(), chosenValue - currentValue)) || |
|
|
|
(!min && |
|
|
|
cc.isLess(storm::utility::zero<ValueType>(), currentValue - chosenValue))) { |
|
|
|
chosenValue = currentValue; |
|
|
|
chosenActionIndex = action; |
|
|
|
} else if ((min && cc.isEqual(storm::utility::zero<ValueType>(), |
|
|
|
chosenValue - currentValue)) || |
|
|
|
(!min && |
|
|
|
cc.isEqual(storm::utility::zero<ValueType>(), |
|
|
|
currentValue - chosenValue))) { |
|
|
|
chosenValue = currentValue; |
|
|
|
chosenActionIndex = action; |
|
|
|
} |
|
|
|
// TODO tie breaker?
|
|
|
|
} |
|
|
@ -148,8 +176,8 @@ namespace storm { |
|
|
|
STORM_PRINT("Grid approximation took " << iteration << " iterations" << std::endl); |
|
|
|
|
|
|
|
beliefGrid.push_back(initialBelief); |
|
|
|
beliefIsKnown.push_back( |
|
|
|
target_observations.find(initialBelief.observation) != target_observations.end()); |
|
|
|
beliefIsTarget.push_back( |
|
|
|
targetObservations.find(initialBelief.observation) != targetObservations.end()); |
|
|
|
|
|
|
|
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> temp = computeSubSimplexAndLambdas( |
|
|
|
initialBelief.probabilities, gridResolution); |
|
|
@ -167,92 +195,197 @@ namespace storm { |
|
|
|
|
|
|
|
// Now onto the under-approximation
|
|
|
|
|
|
|
|
std::set<uint64_t> visitedBelieves; |
|
|
|
std::deque<uint64_t> believesToBeExpanded; |
|
|
|
std::map<uint64_t, uint64_t> beliefStateMap; |
|
|
|
std::vector<std::map<uint64_t, ValueType>> transitions; |
|
|
|
std::vector<uint64_t> targetStates; |
|
|
|
|
|
|
|
uint64_t stateId = 0; |
|
|
|
beliefStateMap[initialBelief.id] = stateId; |
|
|
|
++stateId; |
|
|
|
|
|
|
|
// Expand the believes TODO capsuling
|
|
|
|
visitedBelieves.insert(initialBelief.id); |
|
|
|
believesToBeExpanded.push_back(initialBelief.id); |
|
|
|
while (!believesToBeExpanded.empty()) { |
|
|
|
auto currentBeliefId = believesToBeExpanded.front(); |
|
|
|
std::map<uint64_t, ValueType> transitionsInState; |
|
|
|
STORM_LOG_DEBUG("Exploring Belief " << beliefList[currentBeliefId].observation << "||" |
|
|
|
<< beliefList[currentBeliefId].probabilities); |
|
|
|
if (beliefIsTarget[currentBeliefId]) { |
|
|
|
// add a self-loop to target states and save them
|
|
|
|
transitionsInState[beliefStateMap[currentBeliefId]] = storm::utility::one<ValueType>(); |
|
|
|
targetStates.push_back(beliefStateMap[currentBeliefId]); |
|
|
|
} else { |
|
|
|
if (chosenActions.find(currentBeliefId) == chosenActions.end()) { |
|
|
|
// If the current Belief is not part of the grid, we have not computed the action to choose yet
|
|
|
|
chosenActions[currentBeliefId] = extractBestAction(pomdp, beliefList, beliefIsTarget, |
|
|
|
targetObservations, |
|
|
|
observationProbabilities, |
|
|
|
nextBelieves, result, gridResolution, |
|
|
|
currentBeliefId, beliefList.size(), min); |
|
|
|
} |
|
|
|
for (auto iter = observationProbabilities[currentBeliefId][chosenActions[currentBeliefId]].begin(); |
|
|
|
iter != |
|
|
|
observationProbabilities[currentBeliefId][chosenActions[currentBeliefId]].end(); ++iter) { |
|
|
|
uint32_t observation = iter->first; |
|
|
|
uint64_t nextBeliefId = nextBelieves[currentBeliefId][chosenActions[currentBeliefId]][observation]; |
|
|
|
if (visitedBelieves.insert(nextBeliefId).second) { |
|
|
|
beliefStateMap[nextBeliefId] = stateId; |
|
|
|
++stateId; |
|
|
|
believesToBeExpanded.push_back(nextBeliefId); |
|
|
|
} |
|
|
|
transitionsInState[beliefStateMap[nextBeliefId]] = iter->second; |
|
|
|
} |
|
|
|
} |
|
|
|
transitions.push_back(transitionsInState); |
|
|
|
believesToBeExpanded.pop_front(); |
|
|
|
} |
|
|
|
|
|
|
|
for (size_t i = 0; i < transitions.size(); ++i) { |
|
|
|
for (auto const &transition : transitions[i]) { |
|
|
|
STORM_LOG_DEBUG( |
|
|
|
"Transition: " << i << " -- " << transition.second << "--> " << transition.first); |
|
|
|
} |
|
|
|
} |
|
|
|
storm::models::sparse::StateLabeling labeling(transitions.size()); |
|
|
|
labeling.addLabel("init"); |
|
|
|
labeling.addLabel("target"); |
|
|
|
labeling.addLabelToState("init", 0); |
|
|
|
for (auto targetState : targetStates) { |
|
|
|
labeling.addLabelToState("target", targetState); |
|
|
|
} |
|
|
|
storm::storage::sparse::ModelComponents<ValueType, RewardModelType> modelComponents( |
|
|
|
buildTransitionMatrix(transitions), labeling); |
|
|
|
|
|
|
|
storm::models::sparse::Dtmc<ValueType, RewardModelType> underApproxDtmc(modelComponents); |
|
|
|
auto model = std::make_shared<storm::models::sparse::Dtmc<ValueType, RewardModelType>>(underApproxDtmc); |
|
|
|
model->printModelInformationToStream(std::cout); |
|
|
|
|
|
|
|
std::string propertyString = min ? "Pmin=? [F \"target\"]" : "Pmax=? [F \"target\"]"; |
|
|
|
std::vector<storm::jani::Property> propertyVector = storm::api::parseProperties(propertyString); |
|
|
|
std::shared_ptr<storm::logic::Formula const> property = storm::api::extractFormulasFromProperties( |
|
|
|
propertyVector).front(); |
|
|
|
|
|
|
|
std::unique_ptr<storm::modelchecker::CheckResult> res( |
|
|
|
storm::api::verifyWithSparseEngine<ValueType>(model, storm::api::createTask<ValueType>(property, |
|
|
|
true))); |
|
|
|
STORM_LOG_ASSERT(res, "Result does not exist."); |
|
|
|
res->filter(storm::modelchecker::ExplicitQualitativeCheckResult(model->getInitialStates())); |
|
|
|
ValueType resultValue = res->asExplicitQuantitativeCheckResult<ValueType>().getValueMap().begin()->second; |
|
|
|
|
|
|
|
|
|
|
|
STORM_PRINT("Over-Approximation Result: " << overApprox << std::endl); |
|
|
|
STORM_PRINT("Under-Approximation Result: " << resultValue << std::endl); |
|
|
|
} |
|
|
|
|
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
|
storm::storage::SparseMatrix<ValueType> |
|
|
|
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::buildTransitionMatrix( |
|
|
|
std::vector<std::map<uint64_t, ValueType>> transitions) { |
|
|
|
uint_fast64_t currentRow = 0; |
|
|
|
uint64_t nrEntries = 0; |
|
|
|
for (auto const &map : transitions) { |
|
|
|
nrEntries += map.size(); |
|
|
|
} |
|
|
|
storm::storage::SparseMatrixBuilder<ValueType> smb(transitions.size(), transitions.size(), nrEntries); |
|
|
|
for (auto const &map : transitions) { |
|
|
|
for (auto const &transition : map) { |
|
|
|
smb.addNextValue(currentRow, transition.first, transition.second); |
|
|
|
} |
|
|
|
++currentRow; |
|
|
|
} |
|
|
|
return smb.build(); |
|
|
|
} |
|
|
|
|
|
|
|
/* All this has to be put into a separate function as we have to repeat it for other believes not in the grid
|
|
|
|
// first compute some things for the initial belief
|
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
|
uint64_t ApproximatePOMDPModelchecker<ValueType, RewardModelType>::extractBestAction( |
|
|
|
storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, |
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> &beliefList, |
|
|
|
std::vector<bool> &beliefIsTarget, |
|
|
|
std::set<uint32_t> &targetObservations, |
|
|
|
std::map<uint64_t, std::vector<std::map<uint32_t, ValueType>>> &observationProbabilities, |
|
|
|
std::map<uint64_t, std::vector<std::map<uint32_t, uint64_t>>> &nextBelieves, |
|
|
|
std::map<uint64_t, ValueType> &result, |
|
|
|
uint64_t gridResolution, uint64_t currentBeliefId, uint64_t nextId, bool min) { |
|
|
|
auto cc = storm::utility::ConstantsComparator<ValueType>(); |
|
|
|
storm::pomdp::Belief<ValueType> currentBelief = beliefList[currentBeliefId]; |
|
|
|
std::vector<std::map<uint32_t, ValueType>> observationProbabilitiesInAction; |
|
|
|
std::vector<std::map<uint32_t, uint64_t>> nextBelievesInAction; |
|
|
|
|
|
|
|
uint64_t initialNumChoices = pomdp.getNumberOfChoices( |
|
|
|
pomdp.getStatesWithObservation(initialBelief.observation).front()); |
|
|
|
for (uint64_t action = 0; action < initialNumChoices; ++action) { |
|
|
|
uint64_t numChoices = pomdp.getNumberOfChoices( |
|
|
|
pomdp.getStatesWithObservation(currentBelief.observation).front()); |
|
|
|
for (uint64_t action = 0; action < numChoices; ++action) { |
|
|
|
std::map<uint32_t, ValueType> actionObservationProbabilities = computeObservationProbabilitiesAfterAction( |
|
|
|
pomdp, initialBelief, action); |
|
|
|
pomdp, currentBelief, action); |
|
|
|
std::map<uint32_t, uint64_t> actionObservationBelieves; |
|
|
|
for (auto iter = actionObservationProbabilities.begin(); |
|
|
|
iter != actionObservationProbabilities.end(); ++iter) { |
|
|
|
uint32_t observation = iter->first; |
|
|
|
actionObservationBelieves[observation] = getBeliefAfterActionAndObservation(pomdp, |
|
|
|
beliefList, |
|
|
|
initialBelief, |
|
|
|
beliefIsTarget, |
|
|
|
targetObservations, |
|
|
|
currentBelief, |
|
|
|
action, |
|
|
|
observation, |
|
|
|
nextId); |
|
|
|
nextId = beliefList.size(); |
|
|
|
} |
|
|
|
observationProbabilitiesInAction.push_back(actionObservationProbabilities); |
|
|
|
nextBelievesInAction.push_back(actionObservationBelieves); |
|
|
|
} |
|
|
|
observationProbabilities.push_back(observationProbabilitiesInAction); |
|
|
|
nextBelieves.push_back(nextBelievesInAction); |
|
|
|
//STORM_LOG_DEBUG("ID " << currentBeliefId << " add " << observationProbabilitiesInAction);
|
|
|
|
observationProbabilities.emplace(std::make_pair(currentBeliefId, observationProbabilitiesInAction)); |
|
|
|
nextBelieves.emplace(std::make_pair(currentBeliefId, nextBelievesInAction)); |
|
|
|
|
|
|
|
// do one step here to get the best action in the initial state
|
|
|
|
// choose the action which results in the value computed by the over-approximation
|
|
|
|
ValueType chosenValue = min ? storm::utility::infinity<ValueType>() |
|
|
|
: -storm::utility::infinity<ValueType>(); |
|
|
|
uint64_t chosenActionIndex = std::numeric_limits<uint64_t>::infinity(); |
|
|
|
ValueType currentValue; |
|
|
|
|
|
|
|
for (uint64_t action = 0; action < initialNumChoices; ++action) { |
|
|
|
for (uint64_t action = 0; action < numChoices; ++action) { |
|
|
|
currentValue = storm::utility::zero<ValueType>(); // simply change this for rewards?
|
|
|
|
for (auto iter = observationProbabilities[initialBelief.id][action].begin(); |
|
|
|
iter != observationProbabilities[initialBelief.id][action].end(); ++iter) { |
|
|
|
for (auto iter = observationProbabilities[currentBelief.id][action].begin(); |
|
|
|
iter != observationProbabilities[currentBelief.id][action].end(); ++iter) { |
|
|
|
uint32_t observation = iter->first; |
|
|
|
storm::pomdp::Belief<ValueType> nextBelief = beliefList[nextBelieves[initialBelief.id][action][observation]]; |
|
|
|
storm::pomdp::Belief<ValueType> nextBelief = beliefList[nextBelieves[currentBelief.id][action][observation]]; |
|
|
|
|
|
|
|
// compute subsimplex and lambdas according to the Lovejoy paper to approximate the next belief
|
|
|
|
temp = computeSubSimplexAndLambdas( |
|
|
|
auto temp = computeSubSimplexAndLambdas( |
|
|
|
nextBelief.probabilities, gridResolution); |
|
|
|
std::vector<std::vector<ValueType>> subSimplex = temp.first; |
|
|
|
std::vector<ValueType> lambdas = temp.second; |
|
|
|
|
|
|
|
ValueType sum = storm::utility::zero<ValueType>(); |
|
|
|
auto sum = storm::utility::zero<ValueType>(); |
|
|
|
for (size_t j = 0; j < lambdas.size(); ++j) { |
|
|
|
if (lambdas[j] != storm::utility::zero<ValueType>()) { |
|
|
|
sum += lambdas[j] * result.at( |
|
|
|
getBeliefIdInVector(beliefGrid, observation, subSimplex[j])); |
|
|
|
getBeliefIdInVector(beliefList, observation, subSimplex[j])); |
|
|
|
} |
|
|
|
} |
|
|
|
currentValue += iter->second * sum; |
|
|
|
} |
|
|
|
|
|
|
|
// Update the selected actions
|
|
|
|
// Update the selected actions TODO make this nicer
|
|
|
|
if ((min && cc.isLess(storm::utility::zero<ValueType>(), chosenValue - currentValue)) || |
|
|
|
(!min && |
|
|
|
cc.isLess(storm::utility::zero<ValueType>(), currentValue - chosenValue))) { |
|
|
|
chosenValue = currentValue; |
|
|
|
chosenActionIndex = action; |
|
|
|
} else if ((min && cc.isEqual(storm::utility::zero<ValueType>(), chosenValue - currentValue)) || |
|
|
|
(!min && |
|
|
|
cc.isEqual(storm::utility::zero<ValueType>(), currentValue - chosenValue))) { |
|
|
|
chosenValue = currentValue; |
|
|
|
chosenActionIndex = action; |
|
|
|
} |
|
|
|
} |
|
|
|
chosenActions[initialBelief.id] = chosenActionIndex;*/ |
|
|
|
|
|
|
|
std::set<uint64_t> exploredBelieves; |
|
|
|
std::deque<uint64_t> believesToBeExplored; |
|
|
|
|
|
|
|
exploredBelieves.insert(initialBelief.id); |
|
|
|
believesToBeExplored.push_back(initialBelief.id); |
|
|
|
while (!believesToBeExplored.empty()) { |
|
|
|
auto currentBeliefId = believesToBeExplored.front(); |
|
|
|
if (chosenActions.find(currentBeliefId) != chosenActions.end()) { |
|
|
|
|
|
|
|
} else { |
|
|
|
|
|
|
|
} |
|
|
|
believesToBeExplored.pop_front(); |
|
|
|
return chosenActionIndex; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
STORM_PRINT("Over-Approximation Result: " << overApprox << std::endl); |
|
|
|
} |
|
|
|
|
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
|
uint64_t ApproximatePOMDPModelchecker<ValueType, RewardModelType>::getBeliefIdInVector( |
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> &grid, uint32_t observation, |
|
|
@ -260,12 +393,10 @@ namespace storm { |
|
|
|
for (auto const &belief : grid) { |
|
|
|
if (belief.observation == observation) { |
|
|
|
if (belief.probabilities == probabilities) { |
|
|
|
STORM_LOG_DEBUG("Found belief with id " << std::to_string(belief.id)); |
|
|
|
return belief.id; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
STORM_LOG_DEBUG("Did not find the belief in the grid"); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
|
|
|
@ -482,7 +613,8 @@ namespace storm { |
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
|
uint64_t ApproximatePOMDPModelchecker<ValueType, RewardModelType>::getBeliefAfterActionAndObservation( |
|
|
|
storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, |
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> &beliefList, storm::pomdp::Belief<ValueType> belief, |
|
|
|
std::vector<storm::pomdp::Belief<ValueType>> &beliefList, std::vector<bool> &beliefIsTarget, |
|
|
|
std::set<uint32_t> &targetObservations, storm::pomdp::Belief<ValueType> belief, |
|
|
|
uint64_t actionIndex, uint32_t observation, uint64_t id) { |
|
|
|
std::vector<ValueType> distributionAfter(pomdp.getNumberOfStates(), storm::utility::zero<ValueType>()); |
|
|
|
for (uint64_t state = 0; state < pomdp.getNumberOfStates(); ++state) { |
|
|
@ -508,6 +640,7 @@ namespace storm { |
|
|
|
return getBeliefIdInVector(beliefList, observation, distributionAfter); |
|
|
|
} else { |
|
|
|
beliefList.push_back(storm::pomdp::Belief<ValueType>{id, observation, distributionAfter}); |
|
|
|
beliefIsTarget.push_back(targetObservations.find(observation) != targetObservations.end()); |
|
|
|
return id; |
|
|
|
} |
|
|
|
} |
|
|
|