Browse Source

Temporarily removed the detection of the repository version of TBB from CMakeLists.txt. Corrected TBB sparse matrix-vector multiplication. Added TBB parallel vector addition.

Former-commit-id: f90ae764c8
tempestpy_adaptions
dehnert 11 years ago
parent
commit
cdc369b96a
  1. 17
      CMakeLists.txt
  2. 66
      src/counterexamples/SMTMinimalCommandSetGenerator.h
  3. 27
      src/models/Dtmc.h
  4. 7
      src/models/MarkovAutomaton.h
  5. 10
      src/models/Mdp.h
  6. 18
      src/solver/AbstractNondeterministicLinearEquationSolver.h
  7. 32
      src/storage/SparseMatrix.cpp
  8. 36
      src/storage/SparseMatrix.h
  9. 5
      src/utility/vector.h

17
CMakeLists.txt

@ -45,14 +45,14 @@ set(CUSTOM_BOOST_ROOT "" CACHE STRING "A custom path to the Boost root directory
##
#############################################################
set(TBB_INSTALL_DIR "${PROJECT_SOURCE_DIR}/resources/3rdparty/tbb41_20130314_merged-win-lin-mac/")
if(MSVC)
set(ENV{TBB_ARCH_PLATFORM} "intel64/vc11")
elseif(CMAKE_COMPILER_IS_GNUCC)
set(ENV{TBB_ARCH_PLATFORM} "intel64/gcc4.4")
else(CLANG)
set(ENV{TBB_ARCH_PLATFORM} "intel64/clang3.2")
endif()
#set(TBB_INSTALL_DIR "${PROJECT_SOURCE_DIR}/resources/3rdparty/tbb41_20130314_merged-win-lin-mac/")
#if(MSVC)
# set(ENV{TBB_ARCH_PLATFORM} "intel64/vc11")
#elseif(CMAKE_COMPILER_IS_GNUCC)
# set(ENV{TBB_ARCH_PLATFORM} "intel64/gcc4.4")
#else(CLANG)
# set(ENV{TBB_ARCH_PLATFORM} "intel64/clang3.2")
#endif()
# Add the resources/cmake folder to Module Search Path for FindTBB.cmake
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PROJECT_SOURCE_DIR}/resources/cmake/")
@ -438,6 +438,7 @@ if (TBB_FOUND)
message(STATUS "StoRM - Found Intel TBB with Interface Version ${TBB_INTERFACE_VERSION}")
if (USE_INTELTBB)
message(STATUS "StoRM - Linking with Intel TBB for activated Matrix/Vector MT")
message(${TBB_LIBRARY_DIRS})
include_directories(${TBB_INCLUDE_DIRS})
target_link_libraries(storm tbb tbbmalloc)
target_link_libraries(storm-functional-tests tbb tbbmalloc)

66
src/counterexamples/SMTMinimalCommandSetGenerator.h

@ -123,9 +123,9 @@ namespace storm {
for (uint_fast64_t row = nondeterministicChoiceIndices[state]; row < nondeterministicChoiceIndices[state + 1]; ++row) {
bool currentChoiceRelevant = false;
for (auto& entry : transitionMatrix.getRow(row)) {
for (auto const& entry : transitionMatrix.getRow(row)) {
// If there is a relevant successor, we need to add the labels of the current choice.
if (relevancyInformation.relevantStates.get(entry.column()) || psiStates.get(entry.column())) {
if (relevancyInformation.relevantStates.get(entry.first) || psiStates.get(entry.first)) {
for (auto const& label : choiceLabeling[row]) {
relevancyInformation.relevantLabels.insert(label);
}
@ -212,21 +212,21 @@ namespace storm {
for (auto const& entry : transitionMatrix.getRow(relevantChoice)) {
// If the successor state is neither the state itself nor an irrelevant state, we need to add a variable for the transition.
if (state != entry.column() && (relevancyInformation.relevantStates.get(entry.column()) || psiStates.get(entry.column()))) {
if (state != entry.first && (relevancyInformation.relevantStates.get(entry.first) || psiStates.get(entry.first))) {
// Make sure that there is not already one variable for the state pair. This may happen because of several nondeterministic choices
// targeting the same state.
if (variableInformation.statePairToIndexMap.find(std::make_pair(state, entry.column())) != variableInformation.statePairToIndexMap.end()) {
if (variableInformation.statePairToIndexMap.find(std::make_pair(state, entry.first)) != variableInformation.statePairToIndexMap.end()) {
continue;
}
// At this point we know that the state-pair does not have an associated variable.
variableInformation.statePairToIndexMap[std::make_pair(state, entry.column())] = variableInformation.statePairVariables.size();
variableInformation.statePairToIndexMap[std::make_pair(state, entry.first)] = variableInformation.statePairVariables.size();
// Clear contents of the stream to construct new expression name.
variableName.clear();
variableName.str("");
variableName << "t" << state << "_" << entry.column();
variableName << "t" << state << "_" << entry.first;
variableInformation.statePairVariables.push_back(context.bool_const(variableName.str().c_str()));
}
@ -316,11 +316,11 @@ namespace storm {
// Iterate over successors and add relevant choices of relevant successors to the following label set.
bool canReachTargetState = false;
for (auto const& entry : transitionMatrix.getRow(currentChoice)) {
if (relevancyInformation.relevantStates.get(entry.column())) {
for (auto relevantChoice : relevancyInformation.relevantChoicesForRelevantStates.at(entry.column())) {
if (relevancyInformation.relevantStates.get(entry.first)) {
for (auto relevantChoice : relevancyInformation.relevantChoicesForRelevantStates.at(entry.first)) {
followingLabels[choiceLabeling[currentChoice]].insert(choiceLabeling[currentChoice]);
}
} else if (psiStates.get(entry.column())) {
} else if (psiStates.get(entry.first)) {
canReachTargetState = true;
}
}
@ -335,11 +335,11 @@ namespace storm {
// Iterate over predecessors and add all choices that target the current state to the preceding
// label set of all labels of all relevant choices of the current state.
for (auto const& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (relevancyInformation.relevantStates.get(predecessorEntry.column())) {
for (auto predecessorChoice : relevancyInformation.relevantChoicesForRelevantStates.at(predecessorEntry.column())) {
if (relevancyInformation.relevantStates.get(predecessorEntry.first)) {
for (auto predecessorChoice : relevancyInformation.relevantChoicesForRelevantStates.at(predecessorEntry.first)) {
bool choiceTargetsCurrentState = false;
for (auto const& successorEntry : transitionMatrix.getRow(predecessorChoice)) {
if (successorEntry.column() == currentState) {
if (successorEntry.first == currentState) {
choiceTargetsCurrentState = true;
}
}
@ -581,11 +581,11 @@ namespace storm {
// Iterate over predecessors and add all choices that target the current state to the preceding
// label set of all labels of all relevant choices of the current state.
for (auto const& predecessorEntry : backwardTransitions.getRow(currentState)) {
if (relevancyInformation.relevantStates.get(predecessorEntry.column())) {
for (auto predecessorChoice : relevancyInformation.relevantChoicesForRelevantStates.at(predecessorEntry.column())) {
if (relevancyInformation.relevantStates.get(predecessorEntry.first)) {
for (auto predecessorChoice : relevancyInformation.relevantChoicesForRelevantStates.at(predecessorEntry.first)) {
bool choiceTargetsCurrentState = false;
for (auto const& successorEntry : transitionMatrix.getRow(predecessorChoice)) {
if (successorEntry.column() == currentState) {
if (successorEntry.first == currentState) {
choiceTargetsCurrentState = true;
}
}
@ -913,16 +913,16 @@ namespace storm {
// Assert the constraints (1).
storm::storage::VectorSet<uint_fast64_t> relevantPredecessors;
for (auto const& predecessorEntry : backwardTransitions.getRow(relevantState)) {
if (relevantState != predecessorEntry.column() && relevancyInformation.relevantStates.get(predecessorEntry.column())) {
relevantPredecessors.insert(predecessorEntry.column());
if (relevantState != predecessorEntry.first && relevancyInformation.relevantStates.get(predecessorEntry.first)) {
relevantPredecessors.insert(predecessorEntry.first);
}
}
storm::storage::VectorSet<uint_fast64_t> relevantSuccessors;
for (auto const& relevantChoice : relevancyInformation.relevantChoicesForRelevantStates.at(relevantState)) {
for (auto const& successorEntry : transitionMatrix.getRow(relevantChoice)) {
if (relevantState != successorEntry.column() && (relevancyInformation.relevantStates.get(successorEntry.column()) || psiStates.get(successorEntry.column()))) {
relevantSuccessors.insert(successorEntry.column());
if (relevantState != successorEntry.first && (relevancyInformation.relevantStates.get(successorEntry.first) || psiStates.get(successorEntry.first))) {
relevantSuccessors.insert(successorEntry.first);
}
}
}
@ -941,8 +941,8 @@ namespace storm {
storm::storage::VectorSet<uint_fast64_t> relevantSuccessors;
for (auto const& relevantChoice : relevancyInformation.relevantChoicesForRelevantStates.at(relevantState)) {
for (auto const& successorEntry : transitionMatrix.getRow(relevantChoice)) {
if (relevantState != successorEntry.column() && (relevancyInformation.relevantStates.get(successorEntry.column()) || psiStates.get(successorEntry.column()))) {
relevantSuccessors.insert(successorEntry.column());
if (relevantState != successorEntry.first && (relevancyInformation.relevantStates.get(successorEntry.first) || psiStates.get(successorEntry.first))) {
relevantSuccessors.insert(successorEntry.first);
}
}
}
@ -965,7 +965,7 @@ namespace storm {
storm::storage::VectorSet<uint_fast64_t> choicesForStatePair;
for (auto const& relevantChoice : relevancyInformation.relevantChoicesForRelevantStates.at(sourceState)) {
for (auto const& successorEntry : transitionMatrix.getRow(relevantChoice)) {
if (successorEntry.column() == targetState) {
if (successorEntry.first == targetState) {
choicesForStatePair.insert(relevantChoice);
}
}
@ -1400,13 +1400,13 @@ namespace storm {
bool choiceTargetsRelevantState = false;
for (auto const& successorEntry : transitionMatrix.getRow(currentChoice)) {
if (relevancyInformation.relevantStates.get(successorEntry.column()) && currentState != successorEntry.column()) {
if (relevancyInformation.relevantStates.get(successorEntry.first) && currentState != successorEntry.first) {
choiceTargetsRelevantState = true;
if (!reachableStates.get(successorEntry.column())) {
reachableStates.set(successorEntry.column());
stack.push_back(successorEntry.column());
if (!reachableStates.get(successorEntry.first)) {
reachableStates.set(successorEntry.first);
stack.push_back(successorEntry.first);
}
} else if (psiStates.get(successorEntry.column())) {
} else if (psiStates.get(successorEntry.first)) {
targetStateIsReachable = true;
}
}
@ -1443,7 +1443,7 @@ namespace storm {
// Determine whether the state has the option to leave the reachable state space and go to the unreachable relevant states.
for (auto const& successorEntry : originalMdp.getTransitionMatrix().getRow(currentChoice)) {
if (unreachableRelevantStates.get(successorEntry.column())) {
if (unreachableRelevantStates.get(successorEntry.first)) {
isBorderChoice = true;
}
}
@ -1526,13 +1526,13 @@ namespace storm {
bool choiceTargetsRelevantState = false;
for (auto const& successorEntry : transitionMatrix.getRow(currentChoice)) {
if (relevancyInformation.relevantStates.get(successorEntry.column()) && currentState != successorEntry.column()) {
if (relevancyInformation.relevantStates.get(successorEntry.first) && currentState != successorEntry.first) {
choiceTargetsRelevantState = true;
if (!reachableStates.get(successorEntry.column())) {
reachableStates.set(successorEntry.column(), true);
stack.push_back(successorEntry.column());
if (!reachableStates.get(successorEntry.first)) {
reachableStates.set(successorEntry.first, true);
stack.push_back(successorEntry.first);
}
} else if (psiStates.get(successorEntry.column())) {
} else if (psiStates.get(successorEntry.first)) {
targetStateIsReachable = true;
}
}

27
src/models/Dtmc.h

@ -139,7 +139,7 @@ public:
// Is there any state in the subsystem?
if(subSysStates.getNumberOfSetBits() == 0) {
LOG4CPLUS_ERROR(logger, "No states in subsystem!");
return storm::models::Dtmc<T>(storm::storage::SparseMatrix<T>(0),
return storm::models::Dtmc<T>(storm::storage::SparseMatrix<T>(),
storm::models::AtomicPropositionsLabeling(this->getStateLabeling(), subSysStates),
boost::optional<std::vector<T>>(),
boost::optional<storm::storage::SparseMatrix<T>>(),
@ -189,7 +189,7 @@ public:
// The number of transitions of the new Dtmc is the number of transitions transfered
// from the old one plus one transition for each state to s_b.
storm::storage::SparseMatrix<T> newMat(newStateCount, subSysTransitionCount + newStateCount);
storm::storage::SparseMatrixBuilder<T> newMatBuilder(newStateCount, subSysTransitionCount + newStateCount);
// Now fill the matrix.
newRow = 0;
@ -199,14 +199,14 @@ public:
// Transfer transitions
for(auto& entry : origMat.getRow(row)) {
if(subSysStates.get(entry.first)) {
newMat.addNextValue(newRow, stateMapping[entry.first], entry.second);
newMatBuilder.addNextValue(newRow, stateMapping[entry.first], entry.second);
} else {
rest += entry.second;
}
}
// Insert the transition taking care of the remaining outgoing probability.
newMat.addNextValue(newRow, newStateCount - 1, rest);
newMatBuilder.addNextValue(newRow, newStateCount - 1, rest);
rest = storm::utility::constantZero<T>();
newRow++;
@ -214,9 +214,7 @@ public:
}
// Insert last transition: self loop on s_b
newMat.addNextValue(newStateCount - 1, newStateCount - 1, storm::utility::constantOne<T>());
newMat.finalize();
newMatBuilder.addNextValue(newStateCount - 1, newStateCount - 1, storm::utility::constantOne<T>());
// 3. Take care of the labeling.
storm::models::AtomicPropositionsLabeling newLabeling = storm::models::AtomicPropositionsLabeling(this->getStateLabeling(), subSysStates);
@ -245,7 +243,7 @@ public:
boost::optional<storm::storage::SparseMatrix<T>> newTransitionRewards;
if(this->hasTransitionRewards()) {
storm::storage::SparseMatrix<T> newTransRewards(newStateCount, subSysTransitionCount + newStateCount);
storm::storage::SparseMatrixBuilder<T> newTransRewardsBuilder(newStateCount, subSysTransitionCount + newStateCount);
// Copy the rewards for the kept states
newRow = 0;
@ -254,18 +252,18 @@ public:
// Transfer transition rewards
for(auto& entry : this->getTransitionRewardMatrix().getRow(row)) {
if(subSysStates.get(entry.first)) {
newTransRewards.addNextValue(newRow, stateMapping[entry.first], entry.second);
newTransRewardsBuilder.addNextValue(newRow, stateMapping[entry.first], entry.second);
}
}
// Insert the reward (e.g. 0) for the transition taking care of the remaining outgoing probability.
newTransRewards.addNextValue(newRow, newStateCount - 1, storm::utility::constantZero<T>());
newTransRewardsBuilder.addNextValue(newRow, newStateCount - 1, storm::utility::constantZero<T>());
newRow++;
}
}
newTransitionRewards = newTransRewards;
newTransitionRewards = newTransRewardsBuilder.build();
}
boost::optional<std::vector<storm::storage::VectorSet<uint_fast64_t>>> newChoiceLabels;
@ -283,12 +281,7 @@ public:
}
// 5. Make Dtmc from its parts and return it
return storm::models::Dtmc<T>(newMat,
newLabeling,
newStateRewards,
newTransitionRewards,
newChoiceLabels
);
return storm::models::Dtmc<T>(newMatBuilder.build(), newLabeling, newStateRewards, std::move(newTransitionRewards), newChoiceLabels);
}

7
src/models/MarkovAutomaton.h

@ -127,7 +127,7 @@ namespace storm {
uint_fast64_t newNumberOfRows = this->getNumberOfChoices() - numberOfHybridStates;
// Create the matrix for the new transition relation and the corresponding nondeterministic choice vector.
storm::storage::SparseMatrix<T> newTransitionMatrix;
storm::storage::SparseMatrixBuilder<T> newTransitionMatrixBuilder;
std::vector<uint_fast64_t> newNondeterministicChoiceIndices(this->getNumberOfStates() + 1);
// Now copy over all choices that need to be kept.
@ -149,7 +149,7 @@ namespace storm {
for (uint_fast64_t row = this->nondeterministicChoiceIndices[state] + (this->isHybridState(state) ? 1 : 0); row < this->nondeterministicChoiceIndices[state + 1]; ++row) {
for (auto const& entry : this->transitionMatrix.getRow(row)) {
newTransitionMatrix.addNextValue(currentChoice, entry.first, entry.second);
newTransitionMatrixBuilder.addNextValue(currentChoice, entry.first, entry.second);
}
++currentChoice;
}
@ -159,8 +159,7 @@ namespace storm {
newNondeterministicChoiceIndices.back() = currentChoice;
// Finalize the matrix and put the new transition data in place.
newTransitionMatrix.finalize();
this->transitionMatrix = std::move(newTransitionMatrix);
this->transitionMatrix = newTransitionMatrixBuilder.build();
this->nondeterministicChoiceIndices = std::move(newNondeterministicChoiceIndices);
// Mark the automaton as closed.

10
src/models/Mdp.h

@ -143,7 +143,7 @@ public:
std::vector<storm::storage::VectorSet<uint_fast64_t>> const& choiceLabeling = this->getChoiceLabeling();
storm::storage::SparseMatrix<T> transitionMatrix;
storm::storage::SparseMatrixBuilder<T> transitionMatrixBuilder;
std::vector<uint_fast64_t> nondeterministicChoiceIndices;
std::vector<storm::storage::VectorSet<uint_fast64_t>> newChoiceLabeling;
@ -161,7 +161,7 @@ public:
}
stateHasValidChoice = true;
for (auto const& entry : this->getTransitionMatrix().getRow(choice)) {
transitionMatrix.addNextValue(currentRow, entry.column(), entry.value());
transitionMatrixBuilder.addNextValue(currentRow, entry.first, entry.second);
}
newChoiceLabeling.emplace_back(choiceLabeling[choice]);
++currentRow;
@ -171,15 +171,15 @@ public:
// If no choice of the current state may be taken, we insert a self-loop to the state instead.
if (!stateHasValidChoice) {
nondeterministicChoiceIndices.push_back(currentRow);
transitionMatrix.addNextValue(currentRow, state, storm::utility::constantOne<T>());
transitionMatrixBuilder.addNextValue(currentRow, state, storm::utility::constantOne<T>());
newChoiceLabeling.emplace_back();
++currentRow;
}
}
transitionMatrix.finalize();
nondeterministicChoiceIndices.push_back(currentRow);
Mdp<T> restrictedMdp(std::move(transitionMatrix), storm::models::AtomicPropositionsLabeling(this->getStateLabeling()), std::move(nondeterministicChoiceIndices), this->hasStateRewards() ? boost::optional<std::vector<T>>(this->getStateRewardVector()) : boost::optional<std::vector<T>>(), this->hasTransitionRewards() ? boost::optional<storm::storage::SparseMatrix<T>>(this->getTransitionRewardMatrix()) : boost::optional<storm::storage::SparseMatrix<T>>(), boost::optional<std::vector<storm::storage::VectorSet<uint_fast64_t>>>(newChoiceLabeling));
Mdp<T> restrictedMdp(transitionMatrixBuilder.build(), storm::models::AtomicPropositionsLabeling(this->getStateLabeling()), std::move(nondeterministicChoiceIndices), this->hasStateRewards() ? boost::optional<std::vector<T>>(this->getStateRewardVector()) : boost::optional<std::vector<T>>(), this->hasTransitionRewards() ? boost::optional<storm::storage::SparseMatrix<T>>(this->getTransitionRewardMatrix()) : boost::optional<storm::storage::SparseMatrix<T>>(), boost::optional<std::vector<storm::storage::VectorSet<uint_fast64_t>>>(newChoiceLabeling));
return restrictedMdp;
}

18
src/solver/AbstractNondeterministicLinearEquationSolver.h

@ -99,21 +99,34 @@ namespace storm {
// Proceed with the iterations as long as the method did not converge or reach the
// user-specified maximum number of iterations.
std::chrono::nanoseconds multTime(0);
std::chrono::nanoseconds addTime(0);
std::chrono::nanoseconds reduceTime(0);
std::chrono::nanoseconds convergedTime(0);
auto clock = std::chrono::high_resolution_clock::now();
while (!converged && iterations < maxIterations) {
// Compute x' = A*x + b.
clock = std::chrono::high_resolution_clock::now();
A.multiplyWithVector(*currentX, *multiplyResult);
multTime += std::chrono::high_resolution_clock::now() - clock;
clock = std::chrono::high_resolution_clock::now();
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
addTime += std::chrono::high_resolution_clock::now() - clock;
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
clock = std::chrono::high_resolution_clock::now();
if (minimize) {
storm::utility::vector::reduceVectorMin(*multiplyResult, *newX, nondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax(*multiplyResult, *newX, nondeterministicChoiceIndices);
}
reduceTime += std::chrono::high_resolution_clock::now() - clock;
// Determine whether the method converged.
clock = std::chrono::high_resolution_clock::now();
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, precision, relative);
convergedTime += std::chrono::high_resolution_clock::now() - clock;
// Update environment variables.
swap = currentX;
@ -122,6 +135,11 @@ namespace storm {
++iterations;
}
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(multTime).count() << "ms" << std::endl;
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(addTime).count() << "ms" << std::endl;
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(reduceTime).count() << "ms" << std::endl;
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(convergedTime).count() << "ms" << std::endl;
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (iterations % 2 == 1) {

32
src/storage/SparseMatrix.cpp

@ -693,7 +693,7 @@ namespace storm {
template<typename T>
void SparseMatrix<T>::multiplyWithVector(std::vector<T> const& vector, std::vector<T>& result) const {
#ifdef STORM_HAVE_INTELTBB
tbb::parallel_for(tbb::blocked_range<uint_fast64_t>(0, result.size()), tbbHelper_MatrixRowVectorScalarProduct<storm::storage::SparseMatrix<T>, std::vector<T>, T>(this, &vector, &result));
tbb::parallel_for(tbb::blocked_range<uint_fast64_t>(0, result.size()), TbbMatrixRowVectorScalarProduct<T>(*this, vector, result));
#else
const_iterator it = this->begin();
const_iterator ite = this->begin();
@ -865,30 +865,26 @@ namespace storm {
template std::ostream& operator<<(std::ostream& out, SparseMatrix<int> const& matrix);
#ifdef STORM_HAVE_INTELTBB
template <typename ValueType>
TbbMatrixRowVectorScalarProduct<ValueType>::TbbMatrixRowVectorScalarProduct(SparseMatrix<ValueType> const& matrix, std::vector<ValueType> const& vector, std::vector<ValueType>& result) : result(result), vector(vector), matrix(matrix) {
// Intentionally left empty.
}
template <typename M, typename V, typename T>
tbbHelper_MatrixRowVectorScalarProduct<typename M, typename V, typename T>::tbbHelper_MatrixRowVectorScalarProduct(M const* matrixA, V const* vectorX, V * resultVector) : matrixA(matrixA), vectorX(vectorX), resultVector(resultVector) {}
template <typename M, typename V, typename T>
void tbbHelper_MatrixRowVectorScalarProduct<typename M, typename V, typename T>::operator() (const tbb::blocked_range<uint_fast64_t>& r) const {
for (uint_fast64_t row = r.begin(); row < r.end(); ++row) {
uint_fast64_t index = matrixA->rowIndications.at(row);
uint_fast64_t indexEnd = matrixA->rowIndications.at(row + 1);
// Initialize the result to be 0.
T element = storm::utility::constantZero<T>();
template <typename ValueType>
void TbbMatrixRowVectorScalarProduct<ValueType>::operator() (tbb::blocked_range<uint_fast64_t> const& range) const {
for (uint_fast64_t row = range.begin(); row < range.end(); ++row) {
ValueType element = storm::utility::constantZero<ValueType>();
for (; index != indexEnd; ++index) {
element += matrixA->valueStorage.at(index) * vectorX->at(matrixA->columnIndications.at(index));
for (typename SparseMatrix<ValueType>::const_iterator it = matrix.begin(row), ite = matrix.end(row); it != ite; ++it) {
element += it->second * vector[it->first];
}
// Write back to the result Vector
resultVector->at(row) = element;
result[row] = element;
}
}
// Explicit instanciations of specializations of this template here.
template class tbbHelper_MatrixRowVectorScalarProduct<storm::storage::SparseMatrix<double>, std::vector<double>, double>;
// Explicitly instantiate the helper class.
template class TbbMatrixRowVectorScalarProduct<double>;
#endif

36
src/storage/SparseMatrix.h

@ -36,8 +36,8 @@ namespace storm {
#ifdef STORM_HAVE_INTELTBB
// Forward declaration of the TBB Helper class.
template <typename M, typename V, typename T>
class tbbHelper_MatrixRowVectorScalarProduct;
template <typename ValueType>
class TbbMatrixRowVectorScalarProduct;
#endif
// Forward declare matrix class.
@ -642,20 +642,34 @@ namespace storm {
#ifdef STORM_HAVE_INTELTBB
/*!
* This function is a helper for the parallel execution of the multipliyWithVector method.
* It uses Intel's TBB parallel_for paradigm to split up the row/vector multiplication and summation.
* This class is a helper class for parallel matrix-vector multiplication using Intel TBB.
*/
template <typename M, typename V, typename T>
class tbbHelper_MatrixRowVectorScalarProduct {
template <typename ValueType>
class TbbMatrixRowVectorScalarProduct {
public:
tbbHelper_MatrixRowVectorScalarProduct(M const* matrixA, V const* vectorX, V * resultVector);
/*!
* Constructs a helper object with which TBB can perform parallel matrix-vector multiplication.
*
* @param matrix The matrix to use for the multiplication.
* @param vector The vector with which to multiply the matrix.
* @param result The vector that is supposed to hold the result after performing the multiplication.
*/
TbbMatrixRowVectorScalarProduct(SparseMatrix<ValueType> const& matrix, std::vector<ValueType> const& vector, std::vector<ValueType>& result);
void operator() (const tbb::blocked_range<uint_fast64_t>& r) const;
/*!
* Performs the actual multiplication of a row with the vector.
*/
void operator() (tbb::blocked_range<uint_fast64_t> const& range) const;
private:
V * resultVector;
V const* vectorX;
M const* matrixA;
// The vector that is supposed to hold the result after performing the multiplication.
std::vector<ValueType>& result;
// The vector with which to multiply the matrix.
std::vector<ValueType> const& vector;
// The matrix to use for the multiplication.
SparseMatrix<ValueType> const& matrix;
};
#endif

5
src/utility/vector.h

@ -135,8 +135,11 @@ namespace storm {
LOG4CPLUS_ERROR(logger, "Lengths of vectors do not match, which makes operation impossible.");
throw storm::exceptions::InvalidArgumentException() << "Length of vectors do not match, which makes operation impossible.";
}
#ifdef STORM_HAVE_INTELTBB
tbb::parallel_for(tbb::blocked_range<uint_fast64_t>(0, target.size(), target.size() / 4), [&](tbb::blocked_range<uint_fast64_t>& range) { for (uint_fast64_t current = range.begin(), end = range.end(); current < end; ++current) { target[current] += summand[current]; } });
#else
std::transform(target.begin(), target.end(), summand.begin(), target.begin(), std::plus<T>());
#endif
}
/*!

Loading…
Cancel
Save