Browse Source

min/max sparse game solving alpha version in game-based abstraction

tempestpy_adaptions
dehnert 7 years ago
parent
commit
cbc7246885
  1. 4
      src/storm/abstraction/ExplicitGameStrategy.cpp
  2. 2
      src/storm/abstraction/ExplicitGameStrategy.h
  3. 8
      src/storm/abstraction/ExplicitGameStrategyPair.cpp
  4. 3
      src/storm/abstraction/ExplicitGameStrategyPair.h
  5. 84
      src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

4
src/storm/abstraction/ExplicitGameStrategy.cpp

@ -35,6 +35,10 @@ namespace storm {
}
}
uint64_t ExplicitGameStrategy::getNumberOfUndefinedStates() const {
return std::count_if(choices.begin(), choices.end(), [] (uint64_t choice) { return choice == UNDEFINED; });
}
std::ostream& operator<<(std::ostream& out, ExplicitGameStrategy const& strategy) {
std::vector<uint64_t> undefinedStates;
for (uint64_t state = 0; state < strategy.getNumberOfStates(); ++state) {

2
src/storm/abstraction/ExplicitGameStrategy.h

@ -20,6 +20,8 @@ namespace storm {
bool hasDefinedChoice(uint64_t state) const;
void undefineAll();
uint64_t getNumberOfUndefinedStates() const;
private:
std::vector<uint64_t> choices;
};

8
src/storm/abstraction/ExplicitGameStrategyPair.cpp

@ -27,6 +27,14 @@ namespace storm {
return player2Strategy;
}
uint64_t ExplicitGameStrategyPair::getNumberOfUndefinedPlayer1States() const {
return player1Strategy.getNumberOfUndefinedStates();
}
uint64_t ExplicitGameStrategyPair::getNumberOfUndefinedPlayer2States() const {
return player2Strategy.getNumberOfUndefinedStates();
}
std::ostream& operator<<(std::ostream& out, ExplicitGameStrategyPair const& strategyPair) {
out << "player 1 strategy: " << std::endl << strategyPair.getPlayer1Strategy() << std::endl;
out << "player 2 strategy: " << std::endl << strategyPair.getPlayer2Strategy() << std::endl;

3
src/storm/abstraction/ExplicitGameStrategyPair.h

@ -18,6 +18,9 @@ namespace storm {
ExplicitGameStrategy& getPlayer2Strategy();
ExplicitGameStrategy const& getPlayer2Strategy() const;
uint64_t getNumberOfUndefinedPlayer1States() const;
uint64_t getNumberOfUndefinedPlayer2States() const;
private:
ExplicitGameStrategy player1Strategy;
ExplicitGameStrategy player2Strategy;

84
src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -404,7 +404,6 @@ namespace storm {
storm::storage::BitVector player2MaybeStates = ~(player2Prob0States | player2Prob1States);
// Create the sub-game.
std::cout << "maybe: " << maybeStates << std::endl;
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, player2MaybeStates, maybeStates);
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(player2MaybeStates, player1Prob1States);
std::vector<uint64_t> subPlayer1Groups(maybeStates.getNumberOfSetBits() + 1);
@ -427,6 +426,7 @@ namespace storm {
// Solve the sub-game.
auto gameSolver = storm::solver::GameSolverFactory<ValueType>().create(env, subPlayer1Groups, submatrix);
gameSolver->setTrackSchedulers(true);
std::vector<ValueType> lowerValues(maybeStates.getNumberOfSetBits());
gameSolver->solveGame(env, player1Direction, player2Direction, lowerValues, b);
@ -435,11 +435,33 @@ namespace storm {
storm::utility::vector::setVectorValues(result.getValues(), player1Prob1States, storm::utility::one<ValueType>());
storm::utility::vector::setVectorValues(result.getValues(), maybeStates, lowerValues);
STORM_LOG_ASSERT(gameSolver->hasSchedulers(), "Expected to have schedulers available after solving game.");
std::vector<uint_fast64_t> const& player1Scheduler = gameSolver->getPlayer1SchedulerChoices();
std::vector<uint_fast64_t> const& player2Scheduler = gameSolver->getPlayer2SchedulerChoices();
// Obtain strategies from solver and fuse them with the pre-existing strategy pair for the qualitative result.
uint64_t previousPlayer1MaybeStates = 0;
uint64_t previousPlayer2MaybeStates = 0;
for (auto state : maybeStates) {
uint64_t previousPlayer2StatesForState = 0;
for (uint64_t player2State = player1Groups[state]; player2State < player1Groups[state + 1]; ++player2State) {
if (player1Scheduler[previousPlayer1MaybeStates] == previousPlayer2StatesForState) {
strategyPair.getPlayer1Strategy().setChoice(state, player2State);
}
if (player2MaybeStates.get(player2State)) {
strategyPair.getPlayer2Strategy().setChoice(player2State, transitionMatrix.getRowGroupIndices()[player2State] + player2Scheduler[previousPlayer2MaybeStates]);
exit(-1);
++previousPlayer2StatesForState;
++previousPlayer2MaybeStates;
}
}
++previousPlayer1MaybeStates;
}
return result;
}
template<storm::dd::DdType Type, typename ModelType>
@ -663,6 +685,7 @@ namespace storm {
player2BackwardTransitions[player2State] = player1State;
++player2State;
}
player1Groups[player1State + 1] = player2State;
}
@ -724,42 +747,37 @@ namespace storm {
auto quantitativeStart = std::chrono::high_resolution_clock::now();
ExplicitQuantitativeResultMinMax<ValueType> quantitativeResult;
// (7) Solve the min values and check whether we can give the answer already.
quantitativeResult.setMin(computeQuantitativeResult(env, player1Direction, storm::OptimizationDirection::Minimize, transitionMatrix, player1Groups, qualitativeResult, maybeMin, minStrategyPair));
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Minimize, quantitativeResult.getMin().getRange(initialStates));
if (result) {
return result;
}
// (8) Solve the max values and check whether we can give the answer already.
quantitativeResult.setMax(computeQuantitativeResult(env, player1Direction, storm::OptimizationDirection::Maximize, transitionMatrix, player1Groups, qualitativeResult, maybeMax, maxStrategyPair));
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Maximize, quantitativeResult.getMax().getRange(initialStates));
if (result) {
return result;
}
// SymbolicQuantitativeGameResultMinMax<Type, ValueType> quantitativeResult;
//
// // (7) Solve the min values and check whether we can give the answer already.
// quantitativeResult.min = computeQuantitativeResult(env, player1Direction, storm::OptimizationDirection::Minimize, game, qualitativeResult, initialStatesAdd, maybeMin, reuseQuantitativeResults ? previousMinQuantitativeResult : boost::none);
// previousMinQuantitativeResult = quantitativeResult.min;
// result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Minimize, quantitativeResult.min.getInitialStatesRange());
// if (result) {
// return result;
// }
//
// // (8) Solve the max values and check whether we can give the answer already.
// quantitativeResult.max = computeQuantitativeResult(env, player1Direction, storm::OptimizationDirection::Maximize, game, qualitativeResult, initialStatesAdd, maybeMax, boost::make_optional(quantitativeResult.min));
// result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Maximize, quantitativeResult.max.getInitialStatesRange());
// if (result) {
// return result;
// }
//
auto quantitativeEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Obtained quantitative bounds [" << quantitativeResult.getMin().getRange(initialStates).first << ", " << quantitativeResult.getMax().getRange(initialStates).second << "] on the actual value for the initial states in " << std::chrono::duration_cast<std::chrono::milliseconds>(quantitativeEnd - quantitativeStart).count() << "ms.");
//
// // (9) Check whether the lower and upper bounds are close enough to terminate with an answer.
// result = checkForResultAfterQuantitativeCheck<ValueType>(quantitativeResult.min.getInitialStatesRange().first, quantitativeResult.max.getInitialStatesRange().second, comparator);
// if (result) {
// return result;
// }
//
// // Make sure that all strategies are still valid strategies.
// STORM_LOG_ASSERT(quantitativeResult.min.getPlayer1Strategy().isZero() || quantitativeResult.min.getPlayer1Strategy().template toAdd<ValueType>().sumAbstract(game.getPlayer1Variables()).getMax() <= 1, "Player 1 strategy for min is illegal.");
// STORM_LOG_ASSERT(quantitativeResult.max.getPlayer1Strategy().isZero() || quantitativeResult.max.getPlayer1Strategy().template toAdd<ValueType>().sumAbstract(game.getPlayer1Variables()).getMax() <= 1, "Player 1 strategy for max is illegal.");
// STORM_LOG_ASSERT(quantitativeResult.min.getPlayer2Strategy().isZero() || quantitativeResult.min.getPlayer2Strategy().template toAdd<ValueType>().sumAbstract(game.getPlayer2Variables()).getMax() <= 1, "Player 2 strategy for min is illegal.");
// STORM_LOG_ASSERT(quantitativeResult.max.getPlayer2Strategy().isZero() || quantitativeResult.max.getPlayer2Strategy().template toAdd<ValueType>().sumAbstract(game.getPlayer2Variables()).getMax() <= 1, "Player 2 strategy for max is illegal.");
//
// (9) Check whether the lower and upper bounds are close enough to terminate with an answer.
result = checkForResultAfterQuantitativeCheck<ValueType>(quantitativeResult.getMin().getRange(initialStates).first, quantitativeResult.getMax().getRange(initialStates).second, comparator);
if (result) {
return result;
}
// Make sure that all strategies are still valid strategies.
STORM_LOG_ASSERT(minStrategyPair.getNumberOfUndefinedPlayer1States() == targetStates.getNumberOfSetBits() && minStrategyPair.getNumberOfUndefinedPlayer2States() == 0, "Minimal strategy pair has undefined choices for some relevant states.");
STORM_LOG_ASSERT(maxStrategyPair.getNumberOfUndefinedPlayer1States() == targetStates.getNumberOfSetBits() && maxStrategyPair.getNumberOfUndefinedPlayer2States() == 0, "Maximal strategy pair has undefined choices for some relevant states.");
exit(-1);
auto quantitativeRefinementStart = std::chrono::high_resolution_clock::now();
//
// // (10) If we arrived at this point, it means that we have all qualitative and quantitative
// // information about the game, but we could not yet answer the query. In this case, we need to refine.
// refiner.refine(game, transitionMatrixBdd, quantitativeResult);

Loading…
Cancel
Save