Browse Source

better lower/upper result bounds

tempestpy_adaptions
TimQu 7 years ago
parent
commit
c9beea4f33
  1. 56
      src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp
  2. 6
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
  3. 4
      src/storm/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
  4. 23
      src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  5. 2
      src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.h
  6. 99
      src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp
  7. 6
      src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h

56
src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp

@ -530,46 +530,6 @@ namespace storm {
auto const& rewModel = result.preprocessedModel->getRewardModel(result.objectives[objIndex].formula->asRewardOperatorFormula().getRewardModelName()); auto const& rewModel = result.preprocessedModel->getRewardModel(result.objectives[objIndex].formula->asRewardOperatorFormula().getRewardModelName());
auto actionRewards = rewModel.getTotalRewardVector(transitions); auto actionRewards = rewModel.getTotalRewardVector(transitions);
// TODO: Consider cumulative reward formulas less naively
if (result.objectives[objIndex].formula->getSubformula().isCumulativeRewardFormula()) {
auto const& cumulativeRewardFormula = result.objectives[objIndex].formula->getSubformula().asCumulativeRewardFormula();
ValueType rewardBound = cumulativeRewardFormula.template getBound<ValueType>();
if (cumulativeRewardFormula.getTimeBoundReference().isRewardBound()) {
auto const& costModel = result.preprocessedModel->getRewardModel(cumulativeRewardFormula.getTimeBoundReference().getRewardName());
if (!costModel.hasTransitionRewards()) {
auto actionCosts = costModel.getTotalRewardVector(transitions);
typename SparseModelType::ValueType largestRewardPerCost = storm::utility::zero<typename SparseModelType::ValueType>();
bool isFinite = true;
for (auto rewIt = actionRewards.begin(), costIt = actionCosts.begin(); rewIt != actionRewards.end(); ++rewIt, ++costIt) {
if (!storm::utility::isZero(*rewIt)) {
if (storm::utility::isZero(*costIt)) {
isFinite = false;
break;
}
ValueType rewardPerCost = *rewIt / *costIt;
largestRewardPerCost = std::max(largestRewardPerCost, rewardPerCost);
}
}
if (isFinite) {
ValueType newResultBound = largestRewardPerCost * rewardBound;
if (upperBound) {
upperBound = std::min(upperBound.get(), newResultBound);
} else {
upperBound = newResultBound;
}
}
}
} else {
ValueType newResultBound = (*std::max_element(actionRewards.begin(), actionRewards.end())) * rewardBound;
if (upperBound) {
upperBound = std::min(upperBound.get(), newResultBound);
} else {
upperBound = newResultBound;
}
}
}
if (result.objectives[objIndex].formula->getSubformula().isTotalRewardFormula() || result.objectives[objIndex].formula->getSubformula().isCumulativeRewardFormula()) { if (result.objectives[objIndex].formula->getSubformula().isTotalRewardFormula() || result.objectives[objIndex].formula->getSubformula().isCumulativeRewardFormula()) {
// We have to eliminate ECs here to treat zero-reward ECs // We have to eliminate ECs here to treat zero-reward ECs
@ -590,11 +550,21 @@ namespace storm {
rew0StateProbs.reserve(ecElimRes.matrix.getRowCount()); rew0StateProbs.reserve(ecElimRes.matrix.getRowCount());
for (uint64_t state = 0; state < allStates.size(); ++ state) { for (uint64_t state = 0; state < allStates.size(); ++ state) {
for (uint64_t choice = ecElimRes.matrix.getRowGroupIndices()[state]; choice < ecElimRes.matrix.getRowGroupIndices()[state + 1]; ++choice) { for (uint64_t choice = ecElimRes.matrix.getRowGroupIndices()[state]; choice < ecElimRes.matrix.getRowGroupIndices()[state + 1]; ++choice) {
ValueType outProb = storm::utility::one<ValueType>() - ecElimRes.matrix.getRowSum(choice);
if (!storm::utility::isZero(outProb)) {
// Check whether the choice lead to a state with expRew 0 in the original model
bool isOutChoice = false;
uint64_t originalModelChoice = ecElimRes.newToOldRowMapping[choice];
for (auto const& entry : transitions.getRow(originalModelChoice)) {
if (!expRewGreater0EStates.get(entry.getColumn())) {
isOutChoice = true;
outStates.set(state, true); outStates.set(state, true);
rew0StateProbs.push_back(storm::utility::one<ValueType>() - ecElimRes.matrix.getRowSum(choice));
assert (!storm::utility::isZero(rew0StateProbs.back()));
break;
}
}
if (!isOutChoice) {
rew0StateProbs.push_back(storm::utility::zero<ValueType>());
} }
rew0StateProbs.push_back(outProb);
} }
} }

6
src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp

@ -34,6 +34,12 @@ namespace storm {
STORM_LOG_THROW(preprocessorResult.rewardFinitenessType == SparseMultiObjectivePreprocessorResult<SparseMdpModelType>::RewardFinitenessType::AllFinite, storm::exceptions::NotSupportedException, "There is a scheduler that yields infinite reward for one objective. This is not supported."); STORM_LOG_THROW(preprocessorResult.rewardFinitenessType == SparseMultiObjectivePreprocessorResult<SparseMdpModelType>::RewardFinitenessType::AllFinite, storm::exceptions::NotSupportedException, "There is a scheduler that yields infinite reward for one objective. This is not supported.");
STORM_LOG_THROW(preprocessorResult.preprocessedModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "The model has multiple initial states."); STORM_LOG_THROW(preprocessorResult.preprocessedModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "The model has multiple initial states.");
// Update the objective bounds with what the reward unfolding can compute
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
this->objectives[objIndex].lowerResultBound = rewardUnfolding.getLowerObjectiveBound(objIndex);
this->objectives[objIndex].upperResultBound = rewardUnfolding.getUpperObjectiveBound(objIndex);
}
numCheckedEpochs = 0; numCheckedEpochs = 0;
numChecks = 0; numChecks = 0;
} }

4
src/storm/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp

@ -67,7 +67,7 @@ namespace storm {
} }
auto formula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(checkTask.getFormula().asSharedPointer(), opInfo); auto formula = std::make_shared<storm::logic::ProbabilityOperatorFormula>(checkTask.getFormula().asSharedPointer(), opInfo);
helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula); helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula);
auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(helper::SolutionType::UntilProbabilities, checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates(), *minMaxLinearEquationSolverFactory);
auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
} else { } else {
STORM_LOG_THROW(!pathFormula.hasLowerBound() && pathFormula.hasUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have single upper time bound."); STORM_LOG_THROW(!pathFormula.hasLowerBound() && pathFormula.hasUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have single upper time bound.");
@ -146,7 +146,7 @@ namespace storm {
} }
auto formula = std::make_shared<storm::logic::RewardOperatorFormula>(checkTask.getFormula().asSharedPointer(), checkTask.getRewardModel(), opInfo); auto formula = std::make_shared<storm::logic::RewardOperatorFormula>(checkTask.getFormula().asSharedPointer(), checkTask.getRewardModel(), opInfo);
helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula); helper::rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true> rewardUnfolding(this->getModel(), formula);
auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(helper::SolutionType::ExpectedRewards, checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates(), *minMaxLinearEquationSolverFactory);
auto numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(checkTask.getOptimizationDirection(), rewardUnfolding, this->getModel().getInitialStates(), *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult))); return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
} else { } else {

23
src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -134,7 +134,7 @@ namespace storm {
} }
template<typename ValueType> template<typename ValueType>
std::vector<ValueType> analyzeNonTrivialEpochModel(OptimizationDirection dir, typename rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>::EpochModel& epochModel, std::vector<ValueType>& x, std::vector<ValueType>& b, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>>& minMaxSolver, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory, ValueType const& precision, SolutionType const& type) {
std::vector<ValueType> analyzeNonTrivialEpochModel(OptimizationDirection dir, typename rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>::EpochModel& epochModel, std::vector<ValueType>& x, std::vector<ValueType>& b, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>>& minMaxSolver, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory, ValueType const& precision, boost::optional<ValueType> const& lowerBound, boost::optional<ValueType> const& upperBound) {
// Update some data for the case that the Matrix has changed // Update some data for the case that the Matrix has changed
if (epochModel.epochMatrixChanged) { if (epochModel.epochMatrixChanged) {
@ -146,14 +146,13 @@ namespace storm {
minMaxSolver->setCachingEnabled(true); minMaxSolver->setCachingEnabled(true);
minMaxSolver->setTrackScheduler(true); minMaxSolver->setTrackScheduler(true);
auto req = minMaxSolver->getRequirements(dir); auto req = minMaxSolver->getRequirements(dir);
minMaxSolver->setLowerBound(storm::utility::zero<ValueType>());
if (lowerBound) {
minMaxSolver->setLowerBound(lowerBound.get());
req.clearLowerBounds(); req.clearLowerBounds();
if (type == SolutionType::UntilProbabilities) {
minMaxSolver->setUpperBound(storm::utility::one<ValueType>());
}
if (upperBound) {
minMaxSolver->setUpperBound(upperBound.get());
req.clearUpperBounds(); req.clearUpperBounds();
} else if (type == SolutionType::ExpectedRewards) {
// TODO
STORM_LOG_WARN_COND(!req.requiresUpperBounds(), "Upper bounds for expected reward are not specified.");
} }
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement was not checked."); STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement was not checked.");
minMaxSolver->setRequirementsChecked(); minMaxSolver->setRequirementsChecked();
@ -182,8 +181,14 @@ namespace storm {
} }
template<typename ValueType> template<typename ValueType>
std::map<storm::storage::sparse::state_type, ValueType> SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(SolutionType const& type, OptimizationDirection dir, rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding, storm::storage::BitVector const& initialStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::map<storm::storage::sparse::state_type, ValueType> SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(OptimizationDirection dir, rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding, storm::storage::BitVector const& initialStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
storm::utility::Stopwatch swAll(true), swBuild, swCheck; storm::utility::Stopwatch swAll(true), swBuild, swCheck;
// Get lower and upper bounds for the solution.
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
// Initialize epoch models
auto initEpoch = rewardUnfolding.getStartEpoch(); auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
@ -205,7 +210,7 @@ namespace storm {
if (epochModel.epochMatrix.getEntryCount() == 0) { if (epochModel.epochMatrix.getEntryCount() == 0) {
rewardUnfolding.setSolutionForCurrentEpoch(analyzeTrivialEpochModel<ValueType>(dir, epochModel)); rewardUnfolding.setSolutionForCurrentEpoch(analyzeTrivialEpochModel<ValueType>(dir, epochModel));
} else { } else {
rewardUnfolding.setSolutionForCurrentEpoch(analyzeNonTrivialEpochModel<ValueType>(dir, epochModel, x, b, minMaxSolver, minMaxLinearEquationSolverFactory, precision, type));
rewardUnfolding.setSolutionForCurrentEpoch(analyzeNonTrivialEpochModel<ValueType>(dir, epochModel, x, b, minMaxSolver, minMaxLinearEquationSolverFactory, precision, lowerBound, upperBound));
} }
swCheck.stop(); swCheck.stop();
++numCheckedEpochs; ++numCheckedEpochs;

2
src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.h

@ -38,7 +38,7 @@ namespace storm {
static std::vector<ValueType> computeStepBoundedUntilProbabilities(storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory, ModelCheckerHint const& hint = ModelCheckerHint()); static std::vector<ValueType> computeStepBoundedUntilProbabilities(storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory, ModelCheckerHint const& hint = ModelCheckerHint());
static std::map<storm::storage::sparse::state_type, ValueType> computeRewardBoundedValues(SolutionType const& type, OptimizationDirection dir, rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding, storm::storage::BitVector const& initialStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::map<storm::storage::sparse::state_type, ValueType> computeRewardBoundedValues(OptimizationDirection dir, rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding, storm::storage::BitVector const& initialStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeNextProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory); static std::vector<ValueType> computeNextProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);

99
src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp

@ -9,6 +9,8 @@
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h" #include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h" #include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/modelchecker/prctl/helper/BaierUpperRewardBoundsComputer.h"
#include "storm/transformer/EndComponentEliminator.h" #include "storm/transformer/EndComponentEliminator.h"
#include "storm/exceptions/UnexpectedException.h" #include "storm/exceptions/UnexpectedException.h"
@ -548,6 +550,103 @@ namespace storm {
return precision / storm::utility::convertNumber<ValueType>(sumOfDimensions); return precision / storm::utility::convertNumber<ValueType>(sumOfDimensions);
} }
template<typename ValueType, bool SingleObjectiveMode>
boost::optional<ValueType> MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getUpperObjectiveBound(uint64_t objectiveIndex) {
auto& objective = this->objectives[objectiveIndex];
if (!objective.upperResultBound) {
if (objective.formula->isProbabilityOperatorFormula()) {
objective.upperResultBound = storm::utility::one<ValueType>();
} else if (objective.formula->isRewardOperatorFormula()) {
auto const& rewModel = this->model.getRewardModel(objective.formula->asRewardOperatorFormula().getRewardModelName());
auto actionRewards = rewModel.getTotalRewardVector(this->model.getTransitionMatrix());
if (objective.formula->getSubformula().isCumulativeRewardFormula()) {
// Try to get an upper bound by computing the maximal reward achievable within one epoch step
auto const& cumulativeRewardFormula = objective.formula->getSubformula().asCumulativeRewardFormula();
ValueType rewardBound = cumulativeRewardFormula.template getBound<ValueType>();
if (cumulativeRewardFormula.getTimeBoundReference().isRewardBound()) {
auto const& costModel = this->model.getRewardModel(cumulativeRewardFormula.getTimeBoundReference().getRewardName());
if (!costModel.hasTransitionRewards()) {
auto actionCosts = costModel.getTotalRewardVector(this->model.getTransitionMatrix());
ValueType largestRewardPerCost = storm::utility::zero<ValueType>();
bool isFinite = true;
for (auto rewIt = actionRewards.begin(), costIt = actionCosts.begin(); rewIt != actionRewards.end(); ++rewIt, ++costIt) {
if (!storm::utility::isZero(*rewIt)) {
if (storm::utility::isZero(*costIt)) {
isFinite = false;
break;
}
ValueType rewardPerCost = *rewIt / *costIt;
largestRewardPerCost = std::max(largestRewardPerCost, rewardPerCost);
}
}
if (isFinite) {
objective.upperResultBound = largestRewardPerCost * rewardBound;
}
}
} else {
objective.upperResultBound = (*std::max_element(actionRewards.begin(), actionRewards.end())) * rewardBound;
}
// If we could not find an upper bound, try to get an upper bound for the unbounded case
if (!objective.upperResultBound) {
storm::storage::BitVector allStates(model.getNumberOfStates(), true);
// Get the set of states from which reward is reachable
auto nonZeroRewardStates = rewModel.getStatesWithZeroReward(model.getTransitionMatrix());
nonZeroRewardStates.complement();
auto expRewGreater0EStates = storm::utility::graph::performProbGreater0E(model.getBackwardTransitions(), allStates, nonZeroRewardStates);
// Eliminate zero-reward ECs
auto zeroRewardChoices = rewModel.getChoicesWithZeroReward(model.getTransitionMatrix());
auto ecElimRes = storm::transformer::EndComponentEliminator<ValueType>::transform(model.getTransitionMatrix(), expRewGreater0EStates, zeroRewardChoices, ~allStates);
allStates.resize(ecElimRes.matrix.getRowGroupCount());
storm::storage::BitVector outStates(allStates.size(), false);
std::vector<ValueType> rew0StateProbs;
rew0StateProbs.reserve(ecElimRes.matrix.getRowCount());
for (uint64_t state = 0; state < allStates.size(); ++ state) {
for (uint64_t choice = ecElimRes.matrix.getRowGroupIndices()[state]; choice < ecElimRes.matrix.getRowGroupIndices()[state + 1]; ++choice) {
// Check whether the choice lead to a state with expRew 0 in the original model
bool isOutChoice = false;
uint64_t originalModelChoice = ecElimRes.newToOldRowMapping[choice];
for (auto const& entry : model.getTransitionMatrix().getRow(originalModelChoice)) {
if (!expRewGreater0EStates.get(entry.getColumn())) {
isOutChoice = true;
outStates.set(state, true);
rew0StateProbs.push_back(storm::utility::one<ValueType>() - ecElimRes.matrix.getRowSum(choice));
assert (!storm::utility::isZero(rew0StateProbs.back()));
break;
}
}
if (!isOutChoice) {
rew0StateProbs.push_back(storm::utility::zero<ValueType>());
}
}
}
// An upper reward bound can only be computed if it is below infinity
if (storm::utility::graph::performProb1A(ecElimRes.matrix, ecElimRes.matrix.getRowGroupIndices(), ecElimRes.matrix.transpose(true), allStates, outStates).full()) {
std::vector<ValueType> rewards;
rewards.reserve(ecElimRes.matrix.getRowCount());
for (auto row : ecElimRes.newToOldRowMapping) {
rewards.push_back(actionRewards[row]);
}
storm::modelchecker::helper::BaierUpperRewardBoundsComputer<ValueType> baier(ecElimRes.matrix, rewards, rew0StateProbs);
objective.upperResultBound = baier.computeUpperBound();
}
}
}
}
}
return objective.upperResultBound;
}
template<typename ValueType, bool SingleObjectiveMode>
boost::optional<ValueType> MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::getLowerObjectiveBound(uint64_t objectiveIndex) {
auto& objective = this->objectives[objectiveIndex];
if (!objective.lowerResultBound) {
objective.lowerResultBound = storm::utility::zero<ValueType>();
}
return objective.lowerResultBound;
}
template<typename ValueType, bool SingleObjectiveMode> template<typename ValueType, bool SingleObjectiveMode>
void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions) { void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions) {
STORM_LOG_ASSERT(currentEpoch, "Tried to set a solution for the current epoch, but no epoch was specified before."); STORM_LOG_ASSERT(currentEpoch, "Tried to set a solution for the current epoch, but no epoch was specified before.");

6
src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h

@ -58,6 +58,12 @@ namespace storm {
*/ */
ValueType getRequiredEpochModelPrecision(Epoch const& startEpoch, ValueType const& precision); ValueType getRequiredEpochModelPrecision(Epoch const& startEpoch, ValueType const& precision);
/*!
* Returns an upper/lower bound for the objective result in every state (if this bound could be computed)
*/
boost::optional<ValueType> getUpperObjectiveBound(uint64_t objectiveIndex = 0);
boost::optional<ValueType> getLowerObjectiveBound(uint64_t objectiveIndex = 0);
void setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions); void setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions);
SolutionType const& getInitialStateResult(Epoch const& epoch); // Assumes that the initial state is unique SolutionType const& getInitialStateResult(Epoch const& epoch); // Assumes that the initial state is unique
SolutionType const& getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex); SolutionType const& getInitialStateResult(Epoch const& epoch, uint64_t initialStateIndex);

Loading…
Cancel
Save