|  |  | @ -598,10 +598,8 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 // Now onto the under-approximation
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::utility::Stopwatch underApproxTimer(true); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType underApprox = useMdp ? computeUnderapproximationWithMDP(pomdp, beliefList, beliefIsTarget, targetObservations, observationProbabilities, nextBelieves, | 
			
		
	
		
			
				
					|  |  |  |                                                                                   result, chosenActions, gridResolution, initialBelief.id, min, computeRewards) : | 
			
		
	
		
			
				
					|  |  |  |                                         computeUnderapproximationWithDTMC(pomdp, beliefList, beliefIsTarget, targetObservations, observationProbabilities, nextBelieves, | 
			
		
	
		
			
				
					|  |  |  |                                                                           result, chosenActions, gridResolution, initialBelief.id, min, computeRewards); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType underApprox = computeUnderapproximation(pomdp, beliefList, beliefIsTarget, targetObservations, observationProbabilities, nextBelieves, | 
			
		
	
		
			
				
					|  |  |  |                                                                   result, chosenActions, gridResolution, initialBelief.id, min, computeRewards, useMdp); | 
			
		
	
		
			
				
					|  |  |  |                 underApproxTimer.stop(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 STORM_PRINT("Time Belief Grid Generation: " << beliefGridTimer << std::endl | 
			
		
	
	
		
			
				
					|  |  | @ -631,7 +629,7 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |             template<typename ValueType, typename RewardModelType> | 
			
		
	
		
			
				
					|  |  |  |             ValueType | 
			
		
	
		
			
				
					|  |  |  |             ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeUnderapproximationWithDTMC(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, | 
			
		
	
		
			
				
					|  |  |  |             ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeUnderapproximation(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 std::vector<storm::pomdp::Belief<ValueType>> &beliefList, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 std::vector<bool> &beliefIsTarget, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 std::set<uint32_t> &targetObservations, | 
			
		
	
	
		
			
				
					|  |  | @ -640,110 +638,7 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 std::map<uint64_t, ValueType> &result, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 std::map<uint64_t, std::vector<uint64_t>> chosenActions, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 uint64_t gridResolution, uint64_t initialBeliefId, bool min, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                         bool computeReward) { | 
			
		
	
		
			
				
					|  |  |  |                 std::set<uint64_t> visitedBelieves; | 
			
		
	
		
			
				
					|  |  |  |                 std::deque<uint64_t> believesToBeExpanded; | 
			
		
	
		
			
				
					|  |  |  |                 std::map<uint64_t, uint64_t> beliefStateMap; | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<std::map<uint64_t, ValueType>> transitions; | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<uint64_t> targetStates; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 uint64_t stateId = 0; | 
			
		
	
		
			
				
					|  |  |  |                 beliefStateMap[initialBeliefId] = stateId; | 
			
		
	
		
			
				
					|  |  |  |                 ++stateId; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 // Expand the believes
 | 
			
		
	
		
			
				
					|  |  |  |                 visitedBelieves.insert(initialBeliefId); | 
			
		
	
		
			
				
					|  |  |  |                 believesToBeExpanded.push_back(initialBeliefId); | 
			
		
	
		
			
				
					|  |  |  |                 while (!believesToBeExpanded.empty()) { | 
			
		
	
		
			
				
					|  |  |  |                     auto currentBeliefId = believesToBeExpanded.front(); | 
			
		
	
		
			
				
					|  |  |  |                     std::map<uint64_t, ValueType> transitionsInState; | 
			
		
	
		
			
				
					|  |  |  |                     STORM_LOG_DEBUG("Exploring Belief " << beliefList[currentBeliefId].observation << "||" | 
			
		
	
		
			
				
					|  |  |  |                                                         << beliefList[currentBeliefId].probabilities); | 
			
		
	
		
			
				
					|  |  |  |                     if (beliefIsTarget[currentBeliefId]) { | 
			
		
	
		
			
				
					|  |  |  |                         // add a self-loop to target states and save them
 | 
			
		
	
		
			
				
					|  |  |  |                         transitionsInState[beliefStateMap[currentBeliefId]] = storm::utility::one<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                         targetStates.push_back(beliefStateMap[currentBeliefId]); | 
			
		
	
		
			
				
					|  |  |  |                     } else { | 
			
		
	
		
			
				
					|  |  |  |                         if (chosenActions.find(currentBeliefId) == chosenActions.end()) { | 
			
		
	
		
			
				
					|  |  |  |                             // If the current Belief is not part of the grid, we have not computed the action to choose yet
 | 
			
		
	
		
			
				
					|  |  |  |                             chosenActions[currentBeliefId] = extractBestAction(pomdp, beliefList, beliefIsTarget, targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                observationProbabilities, | 
			
		
	
		
			
				
					|  |  |  |                                                                                nextBelieves, result, gridResolution, | 
			
		
	
		
			
				
					|  |  |  |                                                                                currentBeliefId, beliefList.size(), min); | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                         for (auto iter = observationProbabilities[currentBeliefId][chosenActions[currentBeliefId][0]].begin(); | 
			
		
	
		
			
				
					|  |  |  |                              iter != observationProbabilities[currentBeliefId][chosenActions[currentBeliefId][0]].end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                             uint32_t observation = iter->first; | 
			
		
	
		
			
				
					|  |  |  |                             uint64_t nextBeliefId = nextBelieves[currentBeliefId][chosenActions[currentBeliefId][0]][observation]; | 
			
		
	
		
			
				
					|  |  |  |                             if (visitedBelieves.insert(nextBeliefId).second) { | 
			
		
	
		
			
				
					|  |  |  |                                 beliefStateMap[nextBeliefId] = stateId; | 
			
		
	
		
			
				
					|  |  |  |                                 ++stateId; | 
			
		
	
		
			
				
					|  |  |  |                                 believesToBeExpanded.push_back(nextBeliefId); | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                             transitionsInState[beliefStateMap[nextBeliefId]] = iter->second; | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     transitions.push_back(transitionsInState); | 
			
		
	
		
			
				
					|  |  |  |                     believesToBeExpanded.pop_front(); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::models::sparse::StateLabeling labeling(transitions.size()); | 
			
		
	
		
			
				
					|  |  |  |                 labeling.addLabel("init"); | 
			
		
	
		
			
				
					|  |  |  |                 labeling.addLabel("target"); | 
			
		
	
		
			
				
					|  |  |  |                 labeling.addLabelToState("init", 0); | 
			
		
	
		
			
				
					|  |  |  |                 for (auto targetState : targetStates) { | 
			
		
	
		
			
				
					|  |  |  |                     labeling.addLabelToState("target", targetState); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::models::sparse::StandardRewardModel<ValueType> rewardModel(std::vector<ValueType>(beliefStateMap.size())); | 
			
		
	
		
			
				
					|  |  |  |                 if (computeReward) { | 
			
		
	
		
			
				
					|  |  |  |                     for (auto const &iter : beliefStateMap) { | 
			
		
	
		
			
				
					|  |  |  |                         auto currentBelief = beliefList[iter.first]; | 
			
		
	
		
			
				
					|  |  |  |                         // Add the reward collected by taking the chosen Action in the belief
 | 
			
		
	
		
			
				
					|  |  |  |                         rewardModel.setStateReward(iter.second, getRewardAfterAction(pomdp, pomdp.getChoiceIndex( | 
			
		
	
		
			
				
					|  |  |  |                                 storm::storage::StateActionPair(pomdp.getStatesWithObservation(currentBelief.observation).front(), chosenActions[iter.first][0])), | 
			
		
	
		
			
				
					|  |  |  |                                                                                      currentBelief)); | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::unordered_map<std::string, RewardModelType> rewardModels = {{"std", rewardModel}}; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::sparse::ModelComponents<ValueType, RewardModelType> modelComponents(buildTransitionMatrix(transitions), labeling, rewardModels); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::models::sparse::Dtmc<ValueType, RewardModelType> underApproxDtmc(modelComponents); | 
			
		
	
		
			
				
					|  |  |  |                 auto model = std::make_shared<storm::models::sparse::Dtmc<ValueType, RewardModelType>>(underApproxDtmc); | 
			
		
	
		
			
				
					|  |  |  |                 model->printModelInformationToStream(std::cout); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::string propertyString; | 
			
		
	
		
			
				
					|  |  |  |                 if (computeReward) { | 
			
		
	
		
			
				
					|  |  |  |                     propertyString = min ? "Rmin=? [F \"target\"]" : "Rmax=? [F \"target\"]"; | 
			
		
	
		
			
				
					|  |  |  |                 } else { | 
			
		
	
		
			
				
					|  |  |  |                     propertyString = min ? "Pmin=? [F \"target\"]" : "Pmax=? [F \"target\"]"; | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<storm::jani::Property> propertyVector = storm::api::parseProperties(propertyString); | 
			
		
	
		
			
				
					|  |  |  |                 std::shared_ptr<storm::logic::Formula const> property = storm::api::extractFormulasFromProperties( | 
			
		
	
		
			
				
					|  |  |  |                         propertyVector).front(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::unique_ptr<storm::modelchecker::CheckResult> res( | 
			
		
	
		
			
				
					|  |  |  |                         storm::api::verifyWithSparseEngine<ValueType>(model, storm::api::createTask<ValueType>(property, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                true))); | 
			
		
	
		
			
				
					|  |  |  |                 STORM_LOG_ASSERT(res, "Result does not exist."); | 
			
		
	
		
			
				
					|  |  |  |                 res->filter(storm::modelchecker::ExplicitQualitativeCheckResult(model->getInitialStates())); | 
			
		
	
		
			
				
					|  |  |  |                 return res->asExplicitQuantitativeCheckResult<ValueType>().getValueMap().begin()->second; | 
			
		
	
		
			
				
					|  |  |  |             } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |             template<typename ValueType, typename RewardModelType> | 
			
		
	
		
			
				
					|  |  |  |             ValueType | 
			
		
	
		
			
				
					|  |  |  |             ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeUnderapproximationWithMDP(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::vector<storm::pomdp::Belief<ValueType>> &beliefList, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::vector<bool> &beliefIsTarget, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::set<uint32_t> &targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::map<uint64_t, std::vector<std::map<uint32_t, ValueType>>> &observationProbabilities, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::map<uint64_t, std::vector<std::map<uint32_t, uint64_t>>> &nextBelieves, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::map<uint64_t, ValueType> &result, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        std::map<uint64_t, std::vector<uint64_t>> chosenActions, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        uint64_t gridResolution, uint64_t initialBeliefId, bool min, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                        bool computeRewards) { | 
			
		
	
		
			
				
					|  |  |  |                                                                                                 bool computeRewards, bool generateMdp) { | 
			
		
	
		
			
				
					|  |  |  |                 std::set<uint64_t> visitedBelieves; | 
			
		
	
		
			
				
					|  |  |  |                 std::deque<uint64_t> believesToBeExpanded; | 
			
		
	
		
			
				
					|  |  |  |                 std::map<uint64_t, uint64_t> beliefStateMap; | 
			
		
	
	
		
			
				
					|  |  | @ -768,40 +663,21 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                         targetStates.push_back(beliefStateMap[currentBeliefId]); | 
			
		
	
		
			
				
					|  |  |  |                         actionTransitionStorage.push_back(transitionsInStateWithAction); | 
			
		
	
		
			
				
					|  |  |  |                     } else { | 
			
		
	
		
			
				
					|  |  |  |                         uint64_t numChoices = pomdp.getNumberOfChoices( | 
			
		
	
		
			
				
					|  |  |  |                                 pomdp.getStatesWithObservation(beliefList[currentBeliefId].observation).front()); | 
			
		
	
		
			
				
					|  |  |  |                         if (chosenActions.find(currentBeliefId) == chosenActions.end()) { | 
			
		
	
		
			
				
					|  |  |  |                             // If the current Belief is not part of the grid, the next states have not been computed yet.
 | 
			
		
	
		
			
				
					|  |  |  |                             std::vector<std::map<uint32_t, ValueType>> observationProbabilitiesInAction; | 
			
		
	
		
			
				
					|  |  |  |                             std::vector<std::map<uint32_t, uint64_t>> nextBelievesInAction; | 
			
		
	
		
			
				
					|  |  |  |                             for (uint64_t action = 0; action < numChoices; ++action) { | 
			
		
	
		
			
				
					|  |  |  |                                 std::map<uint32_t, ValueType> actionObservationProbabilities = computeObservationProbabilitiesAfterAction( | 
			
		
	
		
			
				
					|  |  |  |                                         pomdp, beliefList[currentBeliefId], action); | 
			
		
	
		
			
				
					|  |  |  |                                 std::map<uint32_t, uint64_t> actionObservationBelieves; | 
			
		
	
		
			
				
					|  |  |  |                                 for (auto iter = actionObservationProbabilities.begin(); | 
			
		
	
		
			
				
					|  |  |  |                                      iter != actionObservationProbabilities.end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                                     uint32_t observation = iter->first; | 
			
		
	
		
			
				
					|  |  |  |                                     actionObservationBelieves[observation] = getBeliefAfterActionAndObservation(pomdp, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 beliefList, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 beliefIsTarget, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 beliefList[currentBeliefId], | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 action, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 observation, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                 beliefList.size()); | 
			
		
	
		
			
				
					|  |  |  |                                 } | 
			
		
	
		
			
				
					|  |  |  |                                 observationProbabilitiesInAction.push_back(actionObservationProbabilities); | 
			
		
	
		
			
				
					|  |  |  |                                 nextBelievesInAction.push_back(actionObservationBelieves); | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                             observationProbabilities.emplace(std::make_pair(currentBeliefId, observationProbabilitiesInAction)); | 
			
		
	
		
			
				
					|  |  |  |                             nextBelieves.emplace(std::make_pair(currentBeliefId, nextBelievesInAction)); | 
			
		
	
		
			
				
					|  |  |  |                             chosenActions[currentBeliefId] = generateMdp ? extractBestActions(pomdp, beliefList, beliefIsTarget, targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                               observationProbabilities, | 
			
		
	
		
			
				
					|  |  |  |                                                                                               nextBelieves, result, gridResolution, | 
			
		
	
		
			
				
					|  |  |  |                                                                                               currentBeliefId, beliefList.size(), min) : | 
			
		
	
		
			
				
					|  |  |  |                                                              extractBestAction(pomdp, beliefList, beliefIsTarget, targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                observationProbabilities, | 
			
		
	
		
			
				
					|  |  |  |                                                                                nextBelieves, result, gridResolution, | 
			
		
	
		
			
				
					|  |  |  |                                                                                currentBeliefId, beliefList.size(), min); | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                         // Iterate over all actions and add the corresponding transitions
 | 
			
		
	
		
			
				
					|  |  |  |                         for (uint64_t action = 0; action < numChoices; ++action) { | 
			
		
	
		
			
				
					|  |  |  |                         for (auto const &action : chosenActions[currentBeliefId]) { | 
			
		
	
		
			
				
					|  |  |  |                             std::map<uint64_t, ValueType> transitionsInStateWithAction; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                             for (auto iter = observationProbabilities[currentBeliefId][action].begin(); | 
			
		
	
		
			
				
					|  |  |  |                                  iter != observationProbabilities[currentBeliefId][action].end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                             for (auto iter = observationProbabilities[currentBeliefId][action].begin(); iter != observationProbabilities[currentBeliefId][action].end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                                 uint32_t observation = iter->first; | 
			
		
	
		
			
				
					|  |  |  |                                 uint64_t nextBeliefId = nextBelieves[currentBeliefId][action][observation]; | 
			
		
	
		
			
				
					|  |  |  |                                 if (visitedBelieves.insert(nextBeliefId).second) { | 
			
		
	
	
		
			
				
					|  |  | @ -826,11 +702,31 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                     labeling.addLabelToState("target", targetState); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::sparse::ModelComponents<ValueType, RewardModelType> modelComponents( | 
			
		
	
		
			
				
					|  |  |  |                         buildTransitionMatrix(transitions), labeling); | 
			
		
	
		
			
				
					|  |  |  |                 std::shared_ptr<storm::models::sparse::Model<ValueType, RewardModelType>> model; | 
			
		
	
		
			
				
					|  |  |  |                 auto transitionMatrix = buildTransitionMatrix(transitions); | 
			
		
	
		
			
				
					|  |  |  |                 if (transitionMatrix.getRowCount() == transitionMatrix.getRowGroupCount()) { | 
			
		
	
		
			
				
					|  |  |  |                     transitionMatrix.makeRowGroupingTrivial(); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::sparse::ModelComponents<ValueType, RewardModelType> modelComponents(transitionMatrix, labeling); | 
			
		
	
		
			
				
					|  |  |  |                 if (transitionMatrix.hasTrivialRowGrouping()) { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::models::sparse::Mdp<ValueType, RewardModelType> underApproxMdp(modelComponents); | 
			
		
	
		
			
				
					|  |  |  |                     storm::models::sparse::Dtmc<ValueType, RewardModelType> underApproxMc(modelComponents); | 
			
		
	
		
			
				
					|  |  |  |                     storm::models::sparse::StandardRewardModel<ValueType> rewardModel(std::vector<ValueType>(beliefStateMap.size())); | 
			
		
	
		
			
				
					|  |  |  |                     if (computeRewards) { | 
			
		
	
		
			
				
					|  |  |  |                         for (auto const &iter : beliefStateMap) { | 
			
		
	
		
			
				
					|  |  |  |                             auto currentBelief = beliefList[iter.first]; | 
			
		
	
		
			
				
					|  |  |  |                             // Add the reward collected by taking the chosen Action in the belief
 | 
			
		
	
		
			
				
					|  |  |  |                             rewardModel.setStateReward(iter.second, getRewardAfterAction(pomdp, pomdp.getChoiceIndex( | 
			
		
	
		
			
				
					|  |  |  |                                     storm::storage::StateActionPair(pomdp.getStatesWithObservation(currentBelief.observation).front(), chosenActions[iter.first][0])), | 
			
		
	
		
			
				
					|  |  |  |                                                                                          currentBelief)); | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     underApproxMc.addRewardModel("std", rewardModel); | 
			
		
	
		
			
				
					|  |  |  |                     underApproxMc.restrictRewardModels(std::set<std::string>({"std"})); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     model = std::make_shared<storm::models::sparse::Dtmc<ValueType, RewardModelType>>(underApproxMc); | 
			
		
	
		
			
				
					|  |  |  |                 } else { | 
			
		
	
		
			
				
					|  |  |  |                     storm::models::sparse::Mdp<ValueType, RewardModelType> underApproxMdp(modelComponents); | 
			
		
	
		
			
				
					|  |  |  |                     if (computeRewards) { | 
			
		
	
		
			
				
					|  |  |  |                         storm::models::sparse::StandardRewardModel<ValueType> rewardModel(boost::none, std::vector<ValueType>(modelComponents.transitionMatrix.getRowCount())); | 
			
		
	
		
			
				
					|  |  |  |                         for (auto const &iter : beliefStateMap) { | 
			
		
	
	
		
			
				
					|  |  | @ -846,8 +742,8 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                         underApproxMdp.addRewardModel("std", rewardModel); | 
			
		
	
		
			
				
					|  |  |  |                         underApproxMdp.restrictRewardModels(std::set<std::string>({"std"})); | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 auto model = std::make_shared<storm::models::sparse::Mdp<ValueType, RewardModelType>>(underApproxMdp); | 
			
		
	
		
			
				
					|  |  |  |                     model = std::make_shared<storm::models::sparse::Mdp<ValueType, RewardModelType>>(underApproxMdp); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                 model->printModelInformationToStream(std::cout); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::string propertyString; | 
			
		
	
	
		
			
				
					|  |  | @ -857,12 +753,9 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                     propertyString = min ? "Pmin=? [F \"target\"]" : "Pmax=? [F \"target\"]"; | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<storm::jani::Property> propertyVector = storm::api::parseProperties(propertyString); | 
			
		
	
		
			
				
					|  |  |  |                 std::shared_ptr<storm::logic::Formula const> property = storm::api::extractFormulasFromProperties( | 
			
		
	
		
			
				
					|  |  |  |                         propertyVector).front(); | 
			
		
	
		
			
				
					|  |  |  |                 std::shared_ptr<storm::logic::Formula const> property = storm::api::extractFormulasFromProperties(propertyVector).front(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::unique_ptr<storm::modelchecker::CheckResult> res( | 
			
		
	
		
			
				
					|  |  |  |                         storm::api::verifyWithSparseEngine<ValueType>(model, storm::api::createTask<ValueType>(property, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                                true))); | 
			
		
	
		
			
				
					|  |  |  |                 std::unique_ptr<storm::modelchecker::CheckResult> res(storm::api::verifyWithSparseEngine<ValueType>(model, storm::api::createTask<ValueType>(property, true))); | 
			
		
	
		
			
				
					|  |  |  |                 STORM_LOG_ASSERT(res, "Result does not exist."); | 
			
		
	
		
			
				
					|  |  |  |                 res->filter(storm::modelchecker::ExplicitQualitativeCheckResult(model->getInitialStates())); | 
			
		
	
		
			
				
					|  |  |  |                 return res->asExplicitQuantitativeCheckResult<ValueType>().getValueMap().begin()->second; | 
			
		
	
	
		
			
				
					|  |  | @ -938,17 +831,10 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                     std::map<uint32_t, ValueType> actionObservationProbabilities = computeObservationProbabilitiesAfterAction( | 
			
		
	
		
			
				
					|  |  |  |                             pomdp, currentBelief, action); | 
			
		
	
		
			
				
					|  |  |  |                     std::map<uint32_t, uint64_t> actionObservationBelieves; | 
			
		
	
		
			
				
					|  |  |  |                     for (auto iter = actionObservationProbabilities.begin(); | 
			
		
	
		
			
				
					|  |  |  |                          iter != actionObservationProbabilities.end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                     for (auto iter = actionObservationProbabilities.begin(); iter != actionObservationProbabilities.end(); ++iter) { | 
			
		
	
		
			
				
					|  |  |  |                         uint32_t observation = iter->first; | 
			
		
	
		
			
				
					|  |  |  |                         actionObservationBelieves[observation] = getBeliefAfterActionAndObservation(pomdp, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     beliefList, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     beliefIsTarget, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     targetObservations, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     currentBelief, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     action, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     observation, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     nextId); | 
			
		
	
		
			
				
					|  |  |  |                         actionObservationBelieves[observation] = getBeliefAfterActionAndObservation(pomdp, beliefList, beliefIsTarget, targetObservations, currentBelief, | 
			
		
	
		
			
				
					|  |  |  |                                                                                                     action, observation, nextId); | 
			
		
	
		
			
				
					|  |  |  |                         nextId = beliefList.size(); | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     observationProbabilitiesInAction.push_back(actionObservationProbabilities); | 
			
		
	
	
		
			
				
					|  |  | @ -958,8 +844,7 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                 nextBelieves.emplace(std::make_pair(currentBeliefId, nextBelievesInAction)); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 // choose the action which results in the value computed by the over-approximation
 | 
			
		
	
		
			
				
					|  |  |  |                 ValueType chosenValue = min ? storm::utility::infinity<ValueType>() | 
			
		
	
		
			
				
					|  |  |  |                                             : -storm::utility::infinity<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType chosenValue = min ? storm::utility::infinity<ValueType>() : -storm::utility::infinity<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<uint64_t> chosenActionIndices; | 
			
		
	
		
			
				
					|  |  |  |                 ValueType currentValue; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  | 
 |