Browse Source

Use the new MakeStateSetObservationClosed transformer for the belief-exploration based pomdp model checker

tempestpy_adaptions
Tim Quatmann 5 years ago
parent
commit
ae9360af03
  1. 2
      src/storm-pomdp-cli/storm-pomdp.cpp
  2. 65
      src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.cpp
  3. 12
      src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.h

2
src/storm-pomdp-cli/storm-pomdp.cpp

@ -229,7 +229,7 @@ namespace storm {
auto options = storm::pomdp::modelchecker::ApproximatePOMDPModelCheckerOptions<ValueType>(pomdpSettings.isBeliefExplorationDiscretizeSet(), pomdpSettings.isBeliefExplorationUnfoldSet()); auto options = storm::pomdp::modelchecker::ApproximatePOMDPModelCheckerOptions<ValueType>(pomdpSettings.isBeliefExplorationDiscretizeSet(), pomdpSettings.isBeliefExplorationUnfoldSet());
auto const& beliefExplorationSettings = storm::settings::getModule<storm::settings::modules::BeliefExplorationSettings>(); auto const& beliefExplorationSettings = storm::settings::getModule<storm::settings::modules::BeliefExplorationSettings>();
beliefExplorationSettings.setValuesInOptionsStruct(options); beliefExplorationSettings.setValuesInOptionsStruct(options);
storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<ValueType>> checker(*pomdp, options);
storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<ValueType>> checker(pomdp, options);
auto result = checker.check(formula); auto result = checker.check(formula);
checker.printStatisticsToStream(std::cout); checker.printStatisticsToStream(std::cout);
if (storm::utility::resources::isTerminate()) { if (storm::utility::resources::isTerminate()) {

65
src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.cpp

@ -6,6 +6,7 @@
#include "storm-pomdp/analysis/FormulaInformation.h" #include "storm-pomdp/analysis/FormulaInformation.h"
#include "storm-pomdp/analysis/FiniteBeliefMdpDetection.h" #include "storm-pomdp/analysis/FiniteBeliefMdpDetection.h"
#include "storm-pomdp/transformer/MakeStateSetObservationClosed.h"
#include "storm/utility/ConstantsComparator.h" #include "storm/utility/ConstantsComparator.h"
#include "storm/utility/NumberTraits.h" #include "storm/utility/NumberTraits.h"
@ -72,32 +73,45 @@ namespace storm {
} }
template<typename PomdpModelType, typename BeliefValueType> template<typename PomdpModelType, typename BeliefValueType>
ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::ApproximatePOMDPModelchecker(PomdpModelType const& pomdp, Options options) : pomdp(pomdp), options(options) {
ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::ApproximatePOMDPModelchecker(std::shared_ptr<PomdpModelType> pomdp, Options options) : inputPomdp(pomdp), options(options) {
STORM_LOG_ASSERT(inputPomdp, "The given POMDP is not initialized.");
STORM_LOG_ERROR_COND(inputPomdp->isCanonic(), "Input Pomdp is not canonic. This might lead to unexpected verification results.");
cc = storm::utility::ConstantsComparator<ValueType>(storm::utility::convertNumber<ValueType>(this->options.numericPrecision), false); cc = storm::utility::ConstantsComparator<ValueType>(storm::utility::convertNumber<ValueType>(this->options.numericPrecision), false);
} }
template<typename PomdpModelType, typename BeliefValueType> template<typename PomdpModelType, typename BeliefValueType>
typename ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::Result ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::check(storm::logic::Formula const& formula) { typename ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::Result ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::check(storm::logic::Formula const& formula) {
STORM_LOG_ASSERT(options.unfold || options.discretize, "Invoked belief exploration but no task (unfold or discretize) given."); STORM_LOG_ASSERT(options.unfold || options.discretize, "Invoked belief exploration but no task (unfold or discretize) given.");
// Potentially reset preprocessed model from previous call
preprocessedPomdp.reset();
// Reset all collected statistics // Reset all collected statistics
statistics = Statistics(); statistics = Statistics();
statistics.totalTime.start(); statistics.totalTime.start();
// Extract the relevant information from the formula // Extract the relevant information from the formula
auto formulaInfo = storm::pomdp::analysis::getFormulaInformation(pomdp, formula);
auto formulaInfo = storm::pomdp::analysis::getFormulaInformation(pomdp(), formula);
// Compute some initial bounds on the values for each state of the pomdp // Compute some initial bounds on the values for each state of the pomdp
auto initialPomdpValueBounds = TrivialPomdpValueBoundsModelChecker<storm::models::sparse::Pomdp<ValueType>>(pomdp).getValueBounds(formula, formulaInfo);
uint64_t initialPomdpState = pomdp.getInitialStates().getNextSetIndex(0);
auto initialPomdpValueBounds = TrivialPomdpValueBoundsModelChecker<storm::models::sparse::Pomdp<ValueType>>(pomdp()).getValueBounds(formula, formulaInfo);
uint64_t initialPomdpState = pomdp().getInitialStates().getNextSetIndex(0);
Result result(initialPomdpValueBounds.getHighestLowerBound(initialPomdpState), initialPomdpValueBounds.getSmallestUpperBound(initialPomdpState)); Result result(initialPomdpValueBounds.getHighestLowerBound(initialPomdpState), initialPomdpValueBounds.getSmallestUpperBound(initialPomdpState));
STORM_PRINT_AND_LOG("Initial value bounds are [" << result.lowerBound << ", " << result.upperBound << "]" << std::endl); STORM_PRINT_AND_LOG("Initial value bounds are [" << result.lowerBound << ", " << result.upperBound << "]" << std::endl);
boost::optional<std::string> rewardModelName; boost::optional<std::string> rewardModelName;
std::set<uint32_t> targetObservations;
if (formulaInfo.isNonNestedReachabilityProbability() || formulaInfo.isNonNestedExpectedRewardFormula()) { if (formulaInfo.isNonNestedReachabilityProbability() || formulaInfo.isNonNestedExpectedRewardFormula()) {
// FIXME: Instead of giving up, introduce a new observation for target states and make sink states absorbing.
STORM_LOG_THROW(formulaInfo.getTargetStates().observationClosed, storm::exceptions::NotSupportedException, "There are non-target states with the same observation as a target state. This is currently not supported");
if (formulaInfo.getTargetStates().observationClosed) {
targetObservations = formulaInfo.getTargetStates().observations;
} else {
storm::transformer::MakeStateSetObservationClosed<ValueType> obsCloser(inputPomdp);
std::tie(preprocessedPomdp, targetObservations) = obsCloser.transform(formulaInfo.getTargetStates().states);
}
// FIXME: Instead of giving up, make sink states absorbing.
if (formulaInfo.isNonNestedReachabilityProbability()) { if (formulaInfo.isNonNestedReachabilityProbability()) {
if (!formulaInfo.getSinkStates().empty()) { if (!formulaInfo.getSinkStates().empty()) {
auto reachableFromSinkStates = storm::utility::graph::getReachableStates(pomdp.getTransitionMatrix(), formulaInfo.getSinkStates().states, formulaInfo.getSinkStates().states, ~formulaInfo.getSinkStates().states);
auto reachableFromSinkStates = storm::utility::graph::getReachableStates(pomdp().getTransitionMatrix(), formulaInfo.getSinkStates().states, formulaInfo.getSinkStates().states, ~formulaInfo.getSinkStates().states);
reachableFromSinkStates &= ~formulaInfo.getSinkStates().states; reachableFromSinkStates &= ~formulaInfo.getSinkStates().states;
STORM_LOG_THROW(reachableFromSinkStates.empty(), storm::exceptions::NotSupportedException, "There are sink states that can reach non-sink states. This is currently not supported"); STORM_LOG_THROW(reachableFromSinkStates.empty(), storm::exceptions::NotSupportedException, "There are sink states that can reach non-sink states. This is currently not supported");
} }
@ -108,14 +122,14 @@ namespace storm {
} else { } else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Unsupported formula '" << formula << "'."); STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Unsupported formula '" << formula << "'.");
} }
if (storm::pomdp::detectFiniteBeliefMdp(pomdp, formulaInfo.getTargetStates().states)) {
if (storm::pomdp::detectFiniteBeliefMdp(pomdp(), formulaInfo.getTargetStates().states)) {
STORM_PRINT_AND_LOG("Detected that the belief MDP is finite." << std::endl); STORM_PRINT_AND_LOG("Detected that the belief MDP is finite." << std::endl);
} }
if (options.refine) { if (options.refine) {
refineReachability(formulaInfo.getTargetStates().observations, formulaInfo.minimize(), rewardModelName, initialPomdpValueBounds, result);
refineReachability(targetObservations, formulaInfo.minimize(), rewardModelName, initialPomdpValueBounds, result);
} else { } else {
computeReachabilityOTF(formulaInfo.getTargetStates().observations, formulaInfo.minimize(), rewardModelName, initialPomdpValueBounds, result);
computeReachabilityOTF(targetObservations, formulaInfo.minimize(), rewardModelName, initialPomdpValueBounds, result);
} }
// "clear" results in case they were actually not requested (this will make the output a bit more clear) // "clear" results in case they were actually not requested (this will make the output a bit more clear)
if ((formulaInfo.minimize() && !options.discretize) || (formulaInfo.maximize() && !options.unfold)) { if ((formulaInfo.minimize() && !options.discretize) || (formulaInfo.maximize() && !options.unfold)) {
@ -136,8 +150,8 @@ namespace storm {
void ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::printStatisticsToStream(std::ostream& stream) const { void ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::printStatisticsToStream(std::ostream& stream) const {
stream << "##### Grid Approximation Statistics ######" << std::endl; stream << "##### Grid Approximation Statistics ######" << std::endl;
stream << "# Input model: " << std::endl; stream << "# Input model: " << std::endl;
pomdp.printModelInformationToStream(stream);
stream << "# Max. Number of states with same observation: " << pomdp.getMaxNrStatesWithSameObservation() << std::endl;
pomdp().printModelInformationToStream(stream);
stream << "# Max. Number of states with same observation: " << pomdp().getMaxNrStatesWithSameObservation() << std::endl;
if (statistics.aborted) { if (statistics.aborted) {
stream << "# Computation aborted early" << std::endl; stream << "# Computation aborted early" << std::endl;
@ -191,8 +205,8 @@ namespace storm {
void ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::computeReachabilityOTF(std::set<uint32_t> const &targetObservations, bool min, boost::optional<std::string> rewardModelName, storm::pomdp::modelchecker::TrivialPomdpValueBounds<ValueType> const& pomdpValueBounds, Result& result) { void ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::computeReachabilityOTF(std::set<uint32_t> const &targetObservations, bool min, boost::optional<std::string> rewardModelName, storm::pomdp::modelchecker::TrivialPomdpValueBounds<ValueType> const& pomdpValueBounds, Result& result) {
if (options.discretize) { if (options.discretize) {
std::vector<BeliefValueType> observationResolutionVector(pomdp.getNrObservations(), storm::utility::convertNumber<BeliefValueType>(options.resolutionInit));
auto manager = std::make_shared<BeliefManagerType>(pomdp, options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
std::vector<BeliefValueType> observationResolutionVector(pomdp().getNrObservations(), storm::utility::convertNumber<BeliefValueType>(options.resolutionInit));
auto manager = std::make_shared<BeliefManagerType>(pomdp(), options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
if (rewardModelName) { if (rewardModelName) {
manager->setRewardModel(rewardModelName); manager->setRewardModel(rewardModelName);
} }
@ -212,7 +226,7 @@ namespace storm {
} }
} }
if (options.unfold) { // Underapproximation (uses a fresh Belief manager) if (options.unfold) { // Underapproximation (uses a fresh Belief manager)
auto manager = std::make_shared<BeliefManagerType>(pomdp, options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
auto manager = std::make_shared<BeliefManagerType>(pomdp(), options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
if (rewardModelName) { if (rewardModelName) {
manager->setRewardModel(rewardModelName); manager->setRewardModel(rewardModelName);
} }
@ -225,7 +239,7 @@ namespace storm {
if (options.explorationTimeLimit) { if (options.explorationTimeLimit) {
heuristicParameters.sizeThreshold = std::numeric_limits<uint64_t>::max(); heuristicParameters.sizeThreshold = std::numeric_limits<uint64_t>::max();
} else { } else {
heuristicParameters.sizeThreshold = pomdp.getNumberOfStates() * pomdp.getMaxNrStatesWithSameObservation();
heuristicParameters.sizeThreshold = pomdp().getNumberOfStates() * pomdp().getMaxNrStatesWithSameObservation();
STORM_PRINT_AND_LOG("Heuristically selected an under-approximation mdp size threshold of " << heuristicParameters.sizeThreshold << "." << std::endl); STORM_PRINT_AND_LOG("Heuristically selected an under-approximation mdp size threshold of " << heuristicParameters.sizeThreshold << "." << std::endl);
} }
} }
@ -249,8 +263,8 @@ namespace storm {
std::shared_ptr<ExplorerType> overApproximation; std::shared_ptr<ExplorerType> overApproximation;
HeuristicParameters overApproxHeuristicPar; HeuristicParameters overApproxHeuristicPar;
if (options.discretize) { // Setup and build first OverApproximation if (options.discretize) { // Setup and build first OverApproximation
observationResolutionVector = std::vector<BeliefValueType>(pomdp.getNrObservations(), storm::utility::convertNumber<BeliefValueType>(options.resolutionInit));
overApproxBeliefManager = std::make_shared<BeliefManagerType>(pomdp, options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
observationResolutionVector = std::vector<BeliefValueType>(pomdp().getNrObservations(), storm::utility::convertNumber<BeliefValueType>(options.resolutionInit));
overApproxBeliefManager = std::make_shared<BeliefManagerType>(pomdp(), options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
if (rewardModelName) { if (rewardModelName) {
overApproxBeliefManager->setRewardModel(rewardModelName); overApproxBeliefManager->setRewardModel(rewardModelName);
} }
@ -274,7 +288,7 @@ namespace storm {
std::shared_ptr<ExplorerType> underApproximation; std::shared_ptr<ExplorerType> underApproximation;
HeuristicParameters underApproxHeuristicPar; HeuristicParameters underApproxHeuristicPar;
if (options.unfold) { // Setup and build first UnderApproximation if (options.unfold) { // Setup and build first UnderApproximation
underApproxBeliefManager = std::make_shared<BeliefManagerType>(pomdp, options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
underApproxBeliefManager = std::make_shared<BeliefManagerType>(pomdp(), options.numericPrecision, options.dynamicTriangulation ? BeliefManagerType::TriangulationMode::Dynamic : BeliefManagerType::TriangulationMode::Static);
if (rewardModelName) { if (rewardModelName) {
underApproxBeliefManager->setRewardModel(rewardModelName); underApproxBeliefManager->setRewardModel(rewardModelName);
} }
@ -284,7 +298,7 @@ namespace storm {
underApproxHeuristicPar.sizeThreshold = options.sizeThresholdInit; underApproxHeuristicPar.sizeThreshold = options.sizeThresholdInit;
if (underApproxHeuristicPar.sizeThreshold == 0) { if (underApproxHeuristicPar.sizeThreshold == 0) {
// Select a decent value automatically // Select a decent value automatically
underApproxHeuristicPar.sizeThreshold = pomdp.getNumberOfStates() * pomdp.getMaxNrStatesWithSameObservation();
underApproxHeuristicPar.sizeThreshold = pomdp().getNumberOfStates() * pomdp().getMaxNrStatesWithSameObservation();
} }
buildUnderApproximation(targetObservations, min, rewardModelName.is_initialized(), false, underApproxHeuristicPar, underApproxBeliefManager, underApproximation); buildUnderApproximation(targetObservations, min, rewardModelName.is_initialized(), false, underApproxHeuristicPar, underApproxBeliefManager, underApproximation);
if (!underApproximation->hasComputedValues() || storm::utility::resources::isTerminate()) { if (!underApproximation->hasComputedValues() || storm::utility::resources::isTerminate()) {
@ -430,7 +444,7 @@ namespace storm {
auto const& choiceIndices = overApproximation->getExploredMdp()->getNondeterministicChoiceIndices(); auto const& choiceIndices = overApproximation->getExploredMdp()->getNondeterministicChoiceIndices();
BeliefValueType maxResolution = *std::max_element(observationResolutionVector.begin(), observationResolutionVector.end()); BeliefValueType maxResolution = *std::max_element(observationResolutionVector.begin(), observationResolutionVector.end());
std::vector<BeliefValueType> resultingRatings(pomdp.getNrObservations(), storm::utility::one<BeliefValueType>());
std::vector<BeliefValueType> resultingRatings(pomdp().getNrObservations(), storm::utility::one<BeliefValueType>());
std::map<uint32_t, typename ExplorerType::SuccessorObservationInformation> gatheredSuccessorObservations; // Declare here to avoid reallocations std::map<uint32_t, typename ExplorerType::SuccessorObservationInformation> gatheredSuccessorObservations; // Declare here to avoid reallocations
for (uint64_t mdpState = 0; mdpState < numMdpStates; ++mdpState) { for (uint64_t mdpState = 0; mdpState < numMdpStates; ++mdpState) {
@ -831,6 +845,15 @@ namespace storm {
} }
template<typename PomdpModelType, typename BeliefValueType>
PomdpModelType const& ApproximatePOMDPModelchecker<PomdpModelType, BeliefValueType>::pomdp() const {
if (preprocessedPomdp) {
return *preprocessedPomdp;
} else {
return *inputPomdp;
}
}
template class ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<double>>; template class ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<double>>;
template class ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<storm::RationalNumber>>; template class ApproximatePOMDPModelchecker<storm::models::sparse::Pomdp<storm::RationalNumber>>;

12
src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.h

@ -37,13 +37,19 @@ namespace storm {
bool updateUpperBound(ValueType const& value); bool updateUpperBound(ValueType const& value);
}; };
ApproximatePOMDPModelchecker(PomdpModelType const& pomdp, Options options = Options());
ApproximatePOMDPModelchecker(std::shared_ptr<PomdpModelType> pomdp, Options options = Options());
Result check(storm::logic::Formula const& formula); Result check(storm::logic::Formula const& formula);
void printStatisticsToStream(std::ostream& stream) const; void printStatisticsToStream(std::ostream& stream) const;
private: private:
/**
* Returns the pomdp that is to be analyzed
*/
PomdpModelType const& pomdp() const;
/** /**
* Helper method that handles the computation of reachability probabilities and rewards using the on-the-fly state space generation for a fixed grid size * Helper method that handles the computation of reachability probabilities and rewards using the on-the-fly state space generation for a fixed grid size
* *
@ -111,7 +117,9 @@ namespace storm {
}; };
Statistics statistics; Statistics statistics;
PomdpModelType const& pomdp;
std::shared_ptr<PomdpModelType> inputPomdp;
std::shared_ptr<PomdpModelType> preprocessedPomdp;
Options options; Options options;
storm::utility::ConstantsComparator<ValueType> cc; storm::utility::ConstantsComparator<ValueType> cc;
}; };

Loading…
Cancel
Save