Browse Source

improvements for preprocessing

Former-commit-id: 8a43c80178
tempestpy_adaptions
TimQu 9 years ago
parent
commit
ad73e61f12
  1. 5
      examples/multi-objective/mdp/simple/simple.pctl
  2. 7
      src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp
  3. 260
      src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp
  4. 45
      src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h
  5. 89
      src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h

5
examples/multi-objective/mdp/simple/simple.pctl

@ -1,3 +1,2 @@
Pmax=? [ F "a" ] ;
Pmax=? [ F "b" ] ;
multi(P>0.4 [ F "a"], P>0.3 [ F "b"] )
multi(P>0.4 [ F "a"], P>0.3 [ F "b"] )
//multi(Pmin=? [ F<=10 "a"], R<0.3 [ F "b" | "a"] )

7
src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp

@ -35,7 +35,12 @@ namespace storm {
std::unique_ptr<CheckResult> SparseMdpMultiObjectiveModelChecker<SparseMdpModelType>::checkMultiObjectiveFormula(CheckTask<storm::logic::MultiObjectiveFormula> const& checkTask) { std::unique_ptr<CheckResult> SparseMdpMultiObjectiveModelChecker<SparseMdpModelType>::checkMultiObjectiveFormula(CheckTask<storm::logic::MultiObjectiveFormula> const& checkTask) {
helper::SparseMultiObjectiveModelCheckerInformation<SparseMdpModelType> info = helper::SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(checkTask.getFormula(), this->getModel()); helper::SparseMultiObjectiveModelCheckerInformation<SparseMdpModelType> info = helper::SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(checkTask.getFormula(), this->getModel());
std::cout << std::endl;
info.printInformationToStream(std::cout);
return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult()); return std::unique_ptr<CheckResult>(new ExplicitQualitativeCheckResult());
} }

260
src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp

@ -15,7 +15,7 @@
#include "src/utility/graph.h" #include "src/utility/graph.h"
#include "src/exceptions/InvalidPropertyException.h" #include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/UnexpectedException.h"
#include "src/exceptions/NotImplementedException.h"
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
@ -24,240 +24,232 @@ namespace storm {
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
SparseMultiObjectiveModelCheckerInformation<SparseMdpModelType> SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseMdpModelType originalModel) { SparseMultiObjectiveModelCheckerInformation<SparseMdpModelType> SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseMdpModelType originalModel) {
Information info(std::move(originalModel)); Information info(std::move(originalModel));
//Initialize the state mapping. //Initialize the state mapping.
info.setNewToOldStateIndexMapping(storm::utility::vector::buildVectorForRange(0, info.getModel().getNumberOfStates()));
info.newToOldStateIndexMapping = storm::utility::vector::buildVectorForRange(0, info.model.getNumberOfStates());
//Gather information regarding the individual objectives //Gather information regarding the individual objectives
if(!gatherObjectiveInformation(originalFormula, info)){
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not gather information for objectives " << originalFormula << ".");
}
// Find out whether negative rewards should be considered.
if(!setWhetherNegativeRewardsAreConsidered(info)){
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not find out whether to consider negative rewards " << originalFormula << ".");
for(auto const& subFormula : originalFormula.getSubFormulas()){
addObjective(subFormula, info);
} }
// Find out whether negated rewards should be considered.
setWhetherNegatedRewardsAreConsidered(info);
//Invoke preprocessing on objectives //Invoke preprocessing on objectives
bool success = false;
for (auto& obj : info.getObjectives()){
for (auto& obj : info.objectives){
STORM_LOG_DEBUG("Preprocessing objective " << *obj.originalFormula << "."); STORM_LOG_DEBUG("Preprocessing objective " << *obj.originalFormula << ".");
if(obj.originalFormula->isProbabilityOperatorFormula()){ if(obj.originalFormula->isProbabilityOperatorFormula()){
success = preprocess(obj.originalFormula->asProbabilityOperatorFormula(), info, obj);
preprocessFormula(obj.originalFormula->asProbabilityOperatorFormula(), info, obj);
} else if(obj.originalFormula->isRewardOperatorFormula()){ } else if(obj.originalFormula->isRewardOperatorFormula()){
success = preprocess(obj.originalFormula->asRewardOperatorFormula(), info, obj);
preprocessFormula(obj.originalFormula->asRewardOperatorFormula(), info, obj);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *obj.originalFormula << " of " << originalFormula << " because it is not supported");
} }
} }
STORM_LOG_THROW(success, storm::exceptions::InvalidPropertyException, "Could not preprocess for the formula " << originalFormula << ".");
//We can now remove all original reward models to save some memory
std::set<std::string> origRewardModels = originalFormula.getReferencedRewardModels();
for (auto const& rewModel : origRewardModels){
info.model.removeRewardModel(rewModel);
}
return info; return info;
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::gatherObjectiveInformation(storm::logic::MultiObjectiveFormula const& formula, Information& info) {
for(auto const& subF : formula.getSubFormulas()){
if(!subF->isOperatorFormula()){
STORM_LOG_ERROR("Expected an OperatorFormula as subformula of " << formula << " but got " << *subF);
return false;
}
storm::logic::OperatorFormula const& f = subF->asOperatorFormula();
typename Information::ObjectiveInformation objective;
objective.originalFormula = subF;
if(f.hasBound()){
objective.threshold = f.getBound().threshold;
// Note that we minimize if the comparison type is an upper bound since we are interested in the EXISTENCE of a scheduler...
objective.originalFormulaMinimizes = !storm::logic::isLowerBound(f.getBound().comparisonType);
} else if (f.hasOptimalityType()){
objective.originalFormulaMinimizes = storm::solver::minimize(f.getOptimalityType());
} else {
STORM_LOG_ERROR("Current objective" << f << "does not specify whether to minimize or maximize");
}
objective.rewardModelName = "objective" + std::to_string(info.getObjectives().size());
// Make sure the new reward model gets a unique name
while(info.getModel().hasRewardModel(objective.rewardModelName)){
objective.rewardModelName = "_" + objective.rewardModelName;
}
if(!setStepBoundOfObjective(objective)) {
return false;
}
info.getObjectives().push_back(std::move(objective));
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::addObjective(std::shared_ptr<storm::logic::Formula const> const& formula, Information& info) {
STORM_LOG_THROW(formula->isOperatorFormula(), storm::exceptions::InvalidPropertyException, "Expected an OperatorFormula as subformula of multi-objective query but got " << *formula);
typename Information::ObjectiveInformation objective;
objective.originalFormula = formula;
storm::logic::OperatorFormula const& opFormula = formula->asOperatorFormula();
if(opFormula.hasBound()){
objective.threshold = opFormula.getBound().threshold;
// Note that we minimize if the comparison type is an upper bound since we are interested in the EXISTENCE of a scheduler.
objective.originalFormulaMinimizes = !storm::logic::isLowerBound(opFormula.getBound().comparisonType);
} else if (opFormula.hasOptimalityType()){
objective.originalFormulaMinimizes = storm::solver::minimize(opFormula.getOptimalityType());
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << opFormula << " does not specify whether to minimize or maximize");
}
objective.rewardModelName = "objective" + std::to_string(info.objectives.size());
// Make sure the new reward model gets a unique name
while(info.model.hasRewardModel(objective.rewardModelName)){
objective.rewardModelName = "_" + objective.rewardModelName;
} }
return true;
setStepBoundOfObjective(objective);
info.objectives.push_back(std::move(objective));
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::setStepBoundOfObjective(typename Information::ObjectiveInformation& objective){
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::setStepBoundOfObjective(typename Information::ObjectiveInformation& objective){
if(objective.originalFormula->isProbabilityOperatorFormula()){ if(objective.originalFormula->isProbabilityOperatorFormula()){
storm::logic::Formula const& f = objective.originalFormula->asProbabilityOperatorFormula().getSubformula(); storm::logic::Formula const& f = objective.originalFormula->asProbabilityOperatorFormula().getSubformula();
if(f.isBoundedUntilFormula()){ if(f.isBoundedUntilFormula()){
if(f.asBoundedUntilFormula().hasDiscreteTimeBound()){
objective.stepBound = f.asBoundedUntilFormula().getDiscreteTimeBound();
} else {
STORM_LOG_ERROR("Expected a discrete time bound at boundedUntilFormula but got" << f << ".");
return false;
}
STORM_LOG_THROW(f.asBoundedUntilFormula().hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a boundedUntilFormula with a discrete time bound but got " << f << ".");
objective.stepBound = f.asBoundedUntilFormula().getDiscreteTimeBound();
} }
} else if(objective.originalFormula->isRewardOperatorFormula()){ } else if(objective.originalFormula->isRewardOperatorFormula()){
storm::logic::Formula const& f = objective.originalFormula->asRewardOperatorFormula(); storm::logic::Formula const& f = objective.originalFormula->asRewardOperatorFormula();
if(f.isCumulativeRewardFormula()){ if(f.isCumulativeRewardFormula()){
if(f.asCumulativeRewardFormula().hasDiscreteTimeBound()){
objective.stepBound = f.asCumulativeRewardFormula().getDiscreteTimeBound();
} else {
STORM_LOG_ERROR("Expected a discrete time bound at cumulativeRewardFormula but got" << f << ".");
return false;
}
STORM_LOG_THROW(f.asCumulativeRewardFormula().hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a cumulativeRewardFormula with a discrete time bound but got " << f << ".");
objective.stepBound = f.asCumulativeRewardFormula().getDiscreteTimeBound();
} }
} else { } else {
STORM_LOG_ERROR("Expected a Probability or Reward OperatorFormula but got " << *objective.originalFormula << ".");
return false;
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Expected a Probability or Reward OperatorFormula but got " << *objective.originalFormula << ".");
} }
return true;
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::setWhetherNegativeRewardsAreConsidered(Information& info) {
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::setWhetherNegatedRewardsAreConsidered(Information& info) {
// Negative Rewards are considered whenever there is an unbounded reward objective that requires to minimize. // Negative Rewards are considered whenever there is an unbounded reward objective that requires to minimize.
// If there is no unbounded reward objective, we make a majority vote. // If there is no unbounded reward objective, we make a majority vote.
uint_fast64_t numOfMinimizingObjectives = 0; uint_fast64_t numOfMinimizingObjectives = 0;
for(auto const& obj : info.getObjectives()){
for(auto const& obj : info.objectives){
if(obj.originalFormula->isRewardOperatorFormula() && !obj.stepBound){ if(obj.originalFormula->isRewardOperatorFormula() && !obj.stepBound){
info.setNegativeRewardsConsidered(obj.originalFormulaMinimizes);
return true;
info.negatedRewardsConsidered = obj.originalFormulaMinimizes;
return;
} }
numOfMinimizingObjectives += obj.originalFormulaMinimizes ? 1 : 0; numOfMinimizingObjectives += obj.originalFormulaMinimizes ? 1 : 0;
} }
// Reaching this point means that we make a majority vote // Reaching this point means that we make a majority vote
info.setNegativeRewardsConsidered(numOfMinimizingObjectives*2 > info.getObjectives().size());
return true;
info.negatedRewardsConsidered = (numOfMinimizingObjectives*2) > info.objectives.size();
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
// Check if we need to complement the property, e.g., P<0.3 [ F "a" ] ---> P >=0.7 [ G !"a" ] // Check if we need to complement the property, e.g., P<0.3 [ F "a" ] ---> P >=0.7 [ G !"a" ]
// This is the case if the formula requires to minimize and positive rewards are considered or vice versa // This is the case if the formula requires to minimize and positive rewards are considered or vice versa
if(info.areNegativeRewardsConsidered() != currentObjective.originalFormulaMinimizes){
STORM_LOG_ERROR("Inverting of properties not yet supported");
if(info.negatedRewardsConsidered != currentObjective.originalFormulaMinimizes){
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Inverting of properties not supported yet");
//TODO //TODO
return false;
} }
bool success = false;
if(info.negatedRewardsConsidered && currentObjective.threshold){
*(currentObjective.threshold) *= -storm::utility::one<ValueType>();
}
// Invoke preprocessing for subformula // Invoke preprocessing for subformula
if(formula.getSubformula().isUntilFormula()){ if(formula.getSubformula().isUntilFormula()){
success = preprocess(formula.getSubformula().asUntilFormula(), info, currentObjective);
preprocessFormula(formula.getSubformula().asUntilFormula(), info, currentObjective);
} else if(formula.getSubformula().isBoundedUntilFormula()){ } else if(formula.getSubformula().isBoundedUntilFormula()){
success = preprocess(formula.getSubformula().asBoundedUntilFormula(), info, currentObjective);
preprocessFormula(formula.getSubformula().asBoundedUntilFormula(), info, currentObjective);
} else if(formula.getSubformula().isGloballyFormula()){ } else if(formula.getSubformula().isGloballyFormula()){
success = preprocess(formula.getSubformula().asGloballyFormula(), info, currentObjective);
preprocessFormula(formula.getSubformula().asGloballyFormula(), info, currentObjective);
} else if(formula.getSubformula().isEventuallyFormula()){ } else if(formula.getSubformula().isEventuallyFormula()){
success = preprocess(formula.getSubformula().asEventuallyFormula(), info, currentObjective);
preprocessFormula(formula.getSubformula().asEventuallyFormula(), info, currentObjective);
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
} }
STORM_LOG_ERROR_COND(success, "No implementation for the subformula of " << formula << ".");
return success;
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
// Make sure that our decision for negative rewards is consistent with the formula // Make sure that our decision for negative rewards is consistent with the formula
if(info.areNegativeRewardsConsidered() != currentObjective.originalFormulaMinimizes){
STORM_LOG_ERROR("Decided to consider " << (info.areNegativeRewardsConsidered() ? "negative" : "non-negative") << "rewards, but the formula " << formula << (currentObjective.originalFormulaMinimizes ? " minimizes" : "maximizes") << ". Reward objectives should either all minimize or all maximize.");
return false;
}
STORM_LOG_THROW(info.negatedRewardsConsidered == currentObjective.originalFormulaMinimizes, storm::exceptions::InvalidPropertyException, "Decided to consider " << (info.negatedRewardsConsidered ? "negated" : "non-negated") << "rewards, but the formula " << formula << (currentObjective.originalFormulaMinimizes ? " minimizes" : "maximizes") << ". Reward objectives should either all minimize or all maximize.");
// Check if the reward model is uniquely specified // Check if the reward model is uniquely specified
if((formula.hasRewardModelName() && info.getModel().hasRewardModel(formula.getRewardModelName()))
|| info.getModel().hasUniqueRewardModel()){
STORM_LOG_ERROR("The reward model is not unique and the formula " << formula << " does not specify a reward model.");
return false;
STORM_LOG_THROW((formula.hasRewardModelName() && info.model.hasRewardModel(formula.getRewardModelName()))
|| info.model.hasUniqueRewardModel(), storm::exceptions::InvalidPropertyException, "The reward model is not unique and the formula " << formula << " does not specify a reward model.");
if(info.negatedRewardsConsidered && currentObjective.threshold){
*(currentObjective.threshold) *= -storm::utility::one<ValueType>();
} }
bool success = false;
// Invoke preprocessing for subformula // Invoke preprocessing for subformula
if(formula.getSubformula().isEventuallyFormula()){ if(formula.getSubformula().isEventuallyFormula()){
success = preprocess(formula.getSubformula().asEventuallyFormula(), info, currentObjective, formula.getOptionalRewardModelName());
preprocessFormula(formula.getSubformula().asEventuallyFormula(), info, currentObjective, formula.getOptionalRewardModelName());
} else if(formula.getSubformula().isCumulativeRewardFormula()) { } else if(formula.getSubformula().isCumulativeRewardFormula()) {
success = preprocess(formula.getSubformula().asCumulativeRewardFormula(), info, currentObjective, formula.getOptionalRewardModelName());
preprocessFormula(formula.getSubformula().asCumulativeRewardFormula(), info, currentObjective, formula.getOptionalRewardModelName());
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported.");
} }
STORM_LOG_ERROR_COND(success, "No implementation for the subformula of " << formula << ".");
return success;
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
bool success = false;
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
CheckTask<storm::logic::Formula> phiTask(formula.getLeftSubformula()); CheckTask<storm::logic::Formula> phiTask(formula.getLeftSubformula());
CheckTask<storm::logic::Formula> psiTask(formula.getRightSubformula()); CheckTask<storm::logic::Formula> psiTask(formula.getRightSubformula());
storm::modelchecker::SparsePropositionalModelChecker<SparseMdpModelType> mc(info.getModel());
success = mc.canHandle(phiTask) && mc.canHandle(psiTask);
STORM_LOG_ERROR_COND(success, "The subformulas of " << formula << " should be propositional.");
storm::modelchecker::SparsePropositionalModelChecker<SparseMdpModelType> mc(info.model);
STORM_LOG_THROW(mc.canHandle(phiTask) && mc.canHandle(psiTask), storm::exceptions::InvalidPropertyException, "The subformulas of " << formula << " should be propositional.");
storm::storage::BitVector phiStates = mc.check(phiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); storm::storage::BitVector phiStates = mc.check(phiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
auto duplicatorResult = storm::transformer::StateDuplicator<SparseMdpModelType>::transform(info.getModel(), ~phiStates | psiStates);
auto duplicatorResult = storm::transformer::StateDuplicator<SparseMdpModelType>::transform(info.model, ~phiStates | psiStates);
info.model = std::move(*duplicatorResult.model);
// duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula. // duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula.
// This might not be the actual original model. // This might not be the actual original model.
for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){ for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){
originalModelStateIndex = info.getNewToOldStateIndexMapping()[originalModelStateIndex];
originalModelStateIndex = info.newToOldStateIndexMapping[originalModelStateIndex];
} }
info.setNewToOldStateIndexMapping(duplicatorResult.newToOldStateIndexMapping);
info.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping);
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState // build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState
storm::storage::BitVector newPsiStates(duplicatorResult.model->getNumberOfStates(), false);
storm::storage::BitVector newPsiStates(info.model.getNumberOfStates(), false);
for(auto const& oldPsiState : psiStates){ for(auto const& oldPsiState : psiStates){
//note that psiStates are always located in the second copy //note that psiStates are always located in the second copy
newPsiStates.set(duplicatorResult.secondCopyOldToNewStateIndexMapping[oldPsiState], true); newPsiStates.set(duplicatorResult.secondCopyOldToNewStateIndexMapping[oldPsiState], true);
} }
std::vector<ValueType> objectiveRewards = duplicatorResult.model->getTransitionMatrix().getConstrainedRowGroupSumVector(duplicatorResult.firstCopy, newPsiStates);
if(info.areNegativeRewardsConsidered()){
std::vector<ValueType> objectiveRewards(info.model.getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
for (auto const& firstCopyState : duplicatorResult.firstCopy) {
for (uint_fast64_t row = info.model.getTransitionMatrix().getRowGroupIndices()[firstCopyState]; row < info.model.getTransitionMatrix().getRowGroupIndices()[firstCopyState + 1]; ++row) {
objectiveRewards[row] = info.model.getTransitionMatrix().getConstrainedRowSum(row, newPsiStates);
}
}
if(info.negatedRewardsConsidered){
storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one<ValueType>()); storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one<ValueType>());
} }
duplicatorResult.model->getRewardModels().insert(std::make_pair(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)));
info.setModel(std::move(*duplicatorResult.model));
return success;
std::cout << objectiveRewards.size() << "==" << info.model.getTransitionMatrix().getRowCount() << "!=" << info.model.getNumberOfStates() << std::endl;
info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards));
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
return preprocess(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), info, currentObjective);
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), info, currentObjective);
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) {
//TODO //TODO
STORM_LOG_ERROR("Globally not yet implemented");
return false;
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Globally not yet implemented");
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
if(formula.isReachabilityProbabilityFormula()){ if(formula.isReachabilityProbabilityFormula()){
return preprocess(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), info, currentObjective);
preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), info, currentObjective);
return;
} }
if (!formula.isReachabilityRewardFormula()){
STORM_LOG_ERROR("The formula " << formula << " neither considers reachability Probabilities nor reachability rewards");
return false;
STORM_LOG_THROW(formula.isReachabilityRewardFormula(), storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability Probabilities nor reachability rewards");
CheckTask<storm::logic::Formula> targetTask(formula.getSubformula());
storm::modelchecker::SparsePropositionalModelChecker<SparseMdpModelType> mc(info.model);
STORM_LOG_THROW(mc.canHandle(targetTask), storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " should be propositional.");
storm::storage::BitVector targetStates = mc.check(targetTask)->asExplicitQualitativeCheckResult().getTruthValuesVector();
STORM_LOG_WARN("There is no check for reward finiteness yet"); //TODO
auto duplicatorResult = storm::transformer::StateDuplicator<SparseMdpModelType>::transform(info.model, targetStates);
info.model = std::move(*duplicatorResult.model);
// duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula.
// This might not be the actual original model.
for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){
originalModelStateIndex = info.newToOldStateIndexMapping[originalModelStateIndex];
} }
//TODO
STORM_LOG_ERROR("Rewards not yet implemented");
return false;
info.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping);
// Add a reward model that gives zero reward to the states of the second copy.
std::vector<ValueType> objectiveRewards = info.model.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(info.model.getTransitionMatrix());
storm::utility::vector::setVectorValues(objectiveRewards, duplicatorResult.secondCopy, storm::utility::zero<ValueType>());
if(info.negatedRewardsConsidered){
storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one<ValueType>());
}
info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards));
} }
template<typename SparseMdpModelType> template<typename SparseMdpModelType>
bool SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocess(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
//TODO
STORM_LOG_ERROR("Rewards not yet implemented");
return false;
void SparseMdpMultiObjectivePreprocessingHelper<SparseMdpModelType>::preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName) {
std::vector<ValueType> objectiveRewards = info.model.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(info.model.getTransitionMatrix());
if(info.negatedRewardsConsidered){
storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one<ValueType>());
}
info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards));
} }
template class SparseMdpMultiObjectivePreprocessingHelper<storm::models::sparse::Mdp<double>>; template class SparseMdpMultiObjectivePreprocessingHelper<storm::models::sparse::Mdp<double>>;

45
src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h

@ -3,7 +3,6 @@
#include "src/logic/Formulas.h" #include "src/logic/Formulas.h"
#include "src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h" #include "src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h"
#include "src/storage/BitVector.h"
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
@ -30,28 +29,38 @@ namespace storm {
private: private:
static bool gatherObjectiveInformation(storm::logic::MultiObjectiveFormula const& formula, Information& info);
static bool setStepBoundOfObjective(typename Information::ObjectiveInformation& currentObjective);
static bool setWhetherNegativeRewardsAreConsidered(Information& info);
/*!
* Inserts the information regarding the given formula (i.e. objective) into info.objectives
*
* @param formula OperatorFormula representing the objective
* @param the information collected so far
*/
static void addObjective(std::shared_ptr<storm::logic::Formula const> const& formula, Information& info);
/*! /*!
* Apply the neccessary preprocessing for the given formula.
* @param formula the current (sub)formula
* @param info the current state of the preprocessing.
* @return true iff there was no error
* Sets the timeBound for the given objective
*/ */
// State formulas (will transform the formula and the reward model)
static bool preprocess(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static bool preprocess(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void setStepBoundOfObjective(typename Information::ObjectiveInformation& currentObjective);
// Path formulas (will transform the model)
static bool preprocess(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static bool preprocess(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static bool preprocess(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static bool preprocess(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
static bool preprocess(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
/*!
* Sets whether we should consider negated rewards
*/
static void setWhetherNegatedRewardsAreConsidered(Information& info);
static storm::storage::BitVector checkPropositionalFormula(storm::logic::Formula propFormula, SparseMdpModelType const& model);
/*!
* Apply the neccessary preprocessing for the given formula.
* @param formula the current (sub)formula
* @param info the information collected so far
* @param currentObjective the currently considered objective. The given formula should be a a (sub)formula of this objective
* @param optionalRewardModelName the reward model name that is considered for the formula (if available)
*/
static void preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void preprocessFormula(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void preprocessFormula(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void preprocessFormula(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void preprocessFormula(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective);
static void preprocessFormula(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
static void preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional<std::string> const& optionalRewardModelName = boost::none);
}; };

89
src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h

@ -3,6 +3,7 @@
#include <vector> #include <vector>
#include <memory> #include <memory>
#include <iomanip>
#include "src/logic/Formulas.h" #include "src/logic/Formulas.h"
@ -13,8 +14,7 @@ namespace storm {
namespace helper { namespace helper {
template <class SparseModelType> template <class SparseModelType>
class SparseMultiObjectiveModelCheckerInformation {
public :
struct SparseMultiObjectiveModelCheckerInformation {
typedef typename SparseModelType::ValueType ValueType; typedef typename SparseModelType::ValueType ValueType;
typedef typename SparseModelType::RewardModelType RewardModelType; typedef typename SparseModelType::RewardModelType RewardModelType;
@ -25,6 +25,27 @@ namespace storm {
boost::optional<double> threshold; boost::optional<double> threshold;
std::string rewardModelName; std::string rewardModelName;
boost::optional<uint_fast64_t> stepBound; boost::optional<uint_fast64_t> stepBound;
void printInformationToStream(std::ostream& out) const {
out << std::setw(30) << originalFormula->toString();
out << " \t(";
out << (originalFormulaMinimizes ? "minimizes, \t" : "maximizes, \t");
out << "intern threshold:";
if(threshold){
out << std::setw(5) << (*threshold) << ",";
} else {
out << " none,";
}
out << " \t";
out << "intern reward model: " << std::setw(10) << rewardModelName << ", \t";
out << "step bound:";
if(stepBound) {
out << std::setw(5) << (*stepBound);
} else {
out << " none";
}
out << ")" << std::endl;
}
}; };
@ -36,53 +57,33 @@ namespace storm {
//Intentionally left empty //Intentionally left empty
} }
void setModel(SparseModelType&& newModel){
model = newModel;
}
void setModel(SparseModelType const& newModel){
model = newModel;
}
SparseModelType const& getModel() const {
return model;
}
void setNewToOldStateIndexMapping(std::vector<uint_fast64_t> const& newMapping){
newToOldStateIndexMapping = newMapping;
}
void setNewToOldStateIndexMapping(std::vector<uint_fast64_t>&& newMapping){
newToOldStateIndexMapping = newMapping;
}
std::vector<uint_fast64_t>const& getNewToOldStateIndexMapping() const{
return newToOldStateIndexMapping;
}
bool areNegativeRewardsConsidered() {
return negativeRewardsConsidered;
}
void setNegativeRewardsConsidered(bool value){
negativeRewardsConsidered = value;
}
std::vector<ObjectiveInformation>& getObjectives() {
return objectives;
}
std::vector<ObjectiveInformation>const& getObjectives() const {
return objectives;
}
private:
SparseModelType model; SparseModelType model;
std::vector<uint_fast64_t> newToOldStateIndexMapping; std::vector<uint_fast64_t> newToOldStateIndexMapping;
bool negativeRewardsConsidered;
bool negatedRewardsConsidered;
std::vector<ObjectiveInformation> objectives; std::vector<ObjectiveInformation> objectives;
void printInformationToStream(std::ostream& out) {
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
out << " Multi-objective Model Checker Information " << std::endl;
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
out << std::endl;
out << "Objectives:" << std::endl;
out << "--------------------------------------------------------------" << std::endl;
for (auto const& obj : objectives) {
obj.printInformationToStream(out);
}
out << "--------------------------------------------------------------" << std::endl;
out << std::endl;
out << "Preprocessed Model Information:" << std::endl;
model.printModelInformationToStream(out);
out << std::endl;
if(negatedRewardsConsidered){
out << "The rewards in the preprocessed model are negated" << std::endl;
out << std::endl;
}
out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl;
}
}; };

Loading…
Cancel
Save