diff --git a/examples/multi-objective/mdp/simple/simple.pctl b/examples/multi-objective/mdp/simple/simple.pctl index 1300542f9..61e4e1a64 100644 --- a/examples/multi-objective/mdp/simple/simple.pctl +++ b/examples/multi-objective/mdp/simple/simple.pctl @@ -1,3 +1,2 @@ -Pmax=? [ F "a" ] ; -Pmax=? [ F "b" ] ; -multi(P>0.4 [ F "a"], P>0.3 [ F "b"] ) \ No newline at end of file +multi(P>0.4 [ F "a"], P>0.3 [ F "b"] ) +//multi(Pmin=? [ F<=10 "a"], R<0.3 [ F "b" | "a"] ) \ No newline at end of file diff --git a/src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp b/src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp index 7d94481f8..5cd49308e 100644 --- a/src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp +++ b/src/modelchecker/multiobjective/SparseMdpMultiObjectiveModelChecker.cpp @@ -35,7 +35,12 @@ namespace storm { std::unique_ptr SparseMdpMultiObjectiveModelChecker::checkMultiObjectiveFormula(CheckTask const& checkTask) { helper::SparseMultiObjectiveModelCheckerInformation info = helper::SparseMdpMultiObjectivePreprocessingHelper::preprocess(checkTask.getFormula(), this->getModel()); - + + std::cout << std::endl; + info.printInformationToStream(std::cout); + + + return std::unique_ptr(new ExplicitQualitativeCheckResult()); } diff --git a/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp b/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp index 32701b032..935e4ecba 100644 --- a/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp +++ b/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.cpp @@ -15,7 +15,7 @@ #include "src/utility/graph.h" #include "src/exceptions/InvalidPropertyException.h" -#include "src/exceptions/UnexpectedException.h" +#include "src/exceptions/NotImplementedException.h" namespace storm { namespace modelchecker { @@ -24,240 +24,232 @@ namespace storm { template SparseMultiObjectiveModelCheckerInformation SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseMdpModelType originalModel) { Information info(std::move(originalModel)); - //Initialize the state mapping. - info.setNewToOldStateIndexMapping(storm::utility::vector::buildVectorForRange(0, info.getModel().getNumberOfStates())); - + info.newToOldStateIndexMapping = storm::utility::vector::buildVectorForRange(0, info.model.getNumberOfStates()); //Gather information regarding the individual objectives - if(!gatherObjectiveInformation(originalFormula, info)){ - STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not gather information for objectives " << originalFormula << "."); - } - - // Find out whether negative rewards should be considered. - if(!setWhetherNegativeRewardsAreConsidered(info)){ - STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not find out whether to consider negative rewards " << originalFormula << "."); + for(auto const& subFormula : originalFormula.getSubFormulas()){ + addObjective(subFormula, info); } - + // Find out whether negated rewards should be considered. + setWhetherNegatedRewardsAreConsidered(info); //Invoke preprocessing on objectives - bool success = false; - for (auto& obj : info.getObjectives()){ + for (auto& obj : info.objectives){ STORM_LOG_DEBUG("Preprocessing objective " << *obj.originalFormula << "."); if(obj.originalFormula->isProbabilityOperatorFormula()){ - success = preprocess(obj.originalFormula->asProbabilityOperatorFormula(), info, obj); + preprocessFormula(obj.originalFormula->asProbabilityOperatorFormula(), info, obj); } else if(obj.originalFormula->isRewardOperatorFormula()){ - success = preprocess(obj.originalFormula->asRewardOperatorFormula(), info, obj); + preprocessFormula(obj.originalFormula->asRewardOperatorFormula(), info, obj); + } else { + STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Could not preprocess the subformula " << *obj.originalFormula << " of " << originalFormula << " because it is not supported"); } } - STORM_LOG_THROW(success, storm::exceptions::InvalidPropertyException, "Could not preprocess for the formula " << originalFormula << "."); + //We can now remove all original reward models to save some memory + std::set origRewardModels = originalFormula.getReferencedRewardModels(); + for (auto const& rewModel : origRewardModels){ + info.model.removeRewardModel(rewModel); + } return info; } template - bool SparseMdpMultiObjectivePreprocessingHelper::gatherObjectiveInformation(storm::logic::MultiObjectiveFormula const& formula, Information& info) { - for(auto const& subF : formula.getSubFormulas()){ - if(!subF->isOperatorFormula()){ - STORM_LOG_ERROR("Expected an OperatorFormula as subformula of " << formula << " but got " << *subF); - return false; - } - storm::logic::OperatorFormula const& f = subF->asOperatorFormula(); - typename Information::ObjectiveInformation objective; - - objective.originalFormula = subF; - - if(f.hasBound()){ - objective.threshold = f.getBound().threshold; - // Note that we minimize if the comparison type is an upper bound since we are interested in the EXISTENCE of a scheduler... - objective.originalFormulaMinimizes = !storm::logic::isLowerBound(f.getBound().comparisonType); - } else if (f.hasOptimalityType()){ - objective.originalFormulaMinimizes = storm::solver::minimize(f.getOptimalityType()); - } else { - STORM_LOG_ERROR("Current objective" << f << "does not specify whether to minimize or maximize"); - } - - objective.rewardModelName = "objective" + std::to_string(info.getObjectives().size()); - // Make sure the new reward model gets a unique name - while(info.getModel().hasRewardModel(objective.rewardModelName)){ - objective.rewardModelName = "_" + objective.rewardModelName; - } - - if(!setStepBoundOfObjective(objective)) { - return false; - } - - info.getObjectives().push_back(std::move(objective)); + void SparseMdpMultiObjectivePreprocessingHelper::addObjective(std::shared_ptr const& formula, Information& info) { + STORM_LOG_THROW(formula->isOperatorFormula(), storm::exceptions::InvalidPropertyException, "Expected an OperatorFormula as subformula of multi-objective query but got " << *formula); + + typename Information::ObjectiveInformation objective; + objective.originalFormula = formula; + + storm::logic::OperatorFormula const& opFormula = formula->asOperatorFormula(); + if(opFormula.hasBound()){ + objective.threshold = opFormula.getBound().threshold; + // Note that we minimize if the comparison type is an upper bound since we are interested in the EXISTENCE of a scheduler. + objective.originalFormulaMinimizes = !storm::logic::isLowerBound(opFormula.getBound().comparisonType); + } else if (opFormula.hasOptimalityType()){ + objective.originalFormulaMinimizes = storm::solver::minimize(opFormula.getOptimalityType()); + } else { + STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Current objective " << opFormula << " does not specify whether to minimize or maximize"); + } + objective.rewardModelName = "objective" + std::to_string(info.objectives.size()); + // Make sure the new reward model gets a unique name + while(info.model.hasRewardModel(objective.rewardModelName)){ + objective.rewardModelName = "_" + objective.rewardModelName; } - return true; + setStepBoundOfObjective(objective); + info.objectives.push_back(std::move(objective)); } template - bool SparseMdpMultiObjectivePreprocessingHelper::setStepBoundOfObjective(typename Information::ObjectiveInformation& objective){ + void SparseMdpMultiObjectivePreprocessingHelper::setStepBoundOfObjective(typename Information::ObjectiveInformation& objective){ if(objective.originalFormula->isProbabilityOperatorFormula()){ storm::logic::Formula const& f = objective.originalFormula->asProbabilityOperatorFormula().getSubformula(); if(f.isBoundedUntilFormula()){ - if(f.asBoundedUntilFormula().hasDiscreteTimeBound()){ - objective.stepBound = f.asBoundedUntilFormula().getDiscreteTimeBound(); - } else { - STORM_LOG_ERROR("Expected a discrete time bound at boundedUntilFormula but got" << f << "."); - return false; - } + STORM_LOG_THROW(f.asBoundedUntilFormula().hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a boundedUntilFormula with a discrete time bound but got " << f << "."); + objective.stepBound = f.asBoundedUntilFormula().getDiscreteTimeBound(); } } else if(objective.originalFormula->isRewardOperatorFormula()){ storm::logic::Formula const& f = objective.originalFormula->asRewardOperatorFormula(); if(f.isCumulativeRewardFormula()){ - if(f.asCumulativeRewardFormula().hasDiscreteTimeBound()){ - objective.stepBound = f.asCumulativeRewardFormula().getDiscreteTimeBound(); - } else { - STORM_LOG_ERROR("Expected a discrete time bound at cumulativeRewardFormula but got" << f << "."); - return false; - } + STORM_LOG_THROW(f.asCumulativeRewardFormula().hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a cumulativeRewardFormula with a discrete time bound but got " << f << "."); + objective.stepBound = f.asCumulativeRewardFormula().getDiscreteTimeBound(); } } else { - STORM_LOG_ERROR("Expected a Probability or Reward OperatorFormula but got " << *objective.originalFormula << "."); - return false; + STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "Expected a Probability or Reward OperatorFormula but got " << *objective.originalFormula << "."); } - return true; } template - bool SparseMdpMultiObjectivePreprocessingHelper::setWhetherNegativeRewardsAreConsidered(Information& info) { + void SparseMdpMultiObjectivePreprocessingHelper::setWhetherNegatedRewardsAreConsidered(Information& info) { // Negative Rewards are considered whenever there is an unbounded reward objective that requires to minimize. // If there is no unbounded reward objective, we make a majority vote. uint_fast64_t numOfMinimizingObjectives = 0; - for(auto const& obj : info.getObjectives()){ + for(auto const& obj : info.objectives){ if(obj.originalFormula->isRewardOperatorFormula() && !obj.stepBound){ - info.setNegativeRewardsConsidered(obj.originalFormulaMinimizes); - return true; + info.negatedRewardsConsidered = obj.originalFormulaMinimizes; + return; } numOfMinimizingObjectives += obj.originalFormulaMinimizes ? 1 : 0; } // Reaching this point means that we make a majority vote - info.setNegativeRewardsConsidered(numOfMinimizingObjectives*2 > info.getObjectives().size()); - return true; + info.negatedRewardsConsidered = (numOfMinimizingObjectives*2) > info.objectives.size(); } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { // Check if we need to complement the property, e.g., P<0.3 [ F "a" ] ---> P >=0.7 [ G !"a" ] // This is the case if the formula requires to minimize and positive rewards are considered or vice versa - if(info.areNegativeRewardsConsidered() != currentObjective.originalFormulaMinimizes){ - STORM_LOG_ERROR("Inverting of properties not yet supported"); + if(info.negatedRewardsConsidered != currentObjective.originalFormulaMinimizes){ + STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Inverting of properties not supported yet"); //TODO - return false; } - bool success = false; + if(info.negatedRewardsConsidered && currentObjective.threshold){ + *(currentObjective.threshold) *= -storm::utility::one(); + } + // Invoke preprocessing for subformula if(formula.getSubformula().isUntilFormula()){ - success = preprocess(formula.getSubformula().asUntilFormula(), info, currentObjective); + preprocessFormula(formula.getSubformula().asUntilFormula(), info, currentObjective); } else if(formula.getSubformula().isBoundedUntilFormula()){ - success = preprocess(formula.getSubformula().asBoundedUntilFormula(), info, currentObjective); + preprocessFormula(formula.getSubformula().asBoundedUntilFormula(), info, currentObjective); } else if(formula.getSubformula().isGloballyFormula()){ - success = preprocess(formula.getSubformula().asGloballyFormula(), info, currentObjective); + preprocessFormula(formula.getSubformula().asGloballyFormula(), info, currentObjective); } else if(formula.getSubformula().isEventuallyFormula()){ - success = preprocess(formula.getSubformula().asEventuallyFormula(), info, currentObjective); + preprocessFormula(formula.getSubformula().asEventuallyFormula(), info, currentObjective); + } else { + STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); } - STORM_LOG_ERROR_COND(success, "No implementation for the subformula of " << formula << "."); - - return success; } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { // Make sure that our decision for negative rewards is consistent with the formula - if(info.areNegativeRewardsConsidered() != currentObjective.originalFormulaMinimizes){ - STORM_LOG_ERROR("Decided to consider " << (info.areNegativeRewardsConsidered() ? "negative" : "non-negative") << "rewards, but the formula " << formula << (currentObjective.originalFormulaMinimizes ? " minimizes" : "maximizes") << ". Reward objectives should either all minimize or all maximize."); - return false; - } + STORM_LOG_THROW(info.negatedRewardsConsidered == currentObjective.originalFormulaMinimizes, storm::exceptions::InvalidPropertyException, "Decided to consider " << (info.negatedRewardsConsidered ? "negated" : "non-negated") << "rewards, but the formula " << formula << (currentObjective.originalFormulaMinimizes ? " minimizes" : "maximizes") << ". Reward objectives should either all minimize or all maximize."); // Check if the reward model is uniquely specified - if((formula.hasRewardModelName() && info.getModel().hasRewardModel(formula.getRewardModelName())) - || info.getModel().hasUniqueRewardModel()){ - STORM_LOG_ERROR("The reward model is not unique and the formula " << formula << " does not specify a reward model."); - return false; + STORM_LOG_THROW((formula.hasRewardModelName() && info.model.hasRewardModel(formula.getRewardModelName())) + || info.model.hasUniqueRewardModel(), storm::exceptions::InvalidPropertyException, "The reward model is not unique and the formula " << formula << " does not specify a reward model."); + + if(info.negatedRewardsConsidered && currentObjective.threshold){ + *(currentObjective.threshold) *= -storm::utility::one(); } - bool success = false; // Invoke preprocessing for subformula if(formula.getSubformula().isEventuallyFormula()){ - success = preprocess(formula.getSubformula().asEventuallyFormula(), info, currentObjective, formula.getOptionalRewardModelName()); + preprocessFormula(formula.getSubformula().asEventuallyFormula(), info, currentObjective, formula.getOptionalRewardModelName()); } else if(formula.getSubformula().isCumulativeRewardFormula()) { - success = preprocess(formula.getSubformula().asCumulativeRewardFormula(), info, currentObjective, formula.getOptionalRewardModelName()); + preprocessFormula(formula.getSubformula().asCumulativeRewardFormula(), info, currentObjective, formula.getOptionalRewardModelName()); + } else { + STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); } - STORM_LOG_ERROR_COND(success, "No implementation for the subformula of " << formula << "."); - - return success; - } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { - bool success = false; + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { CheckTask phiTask(formula.getLeftSubformula()); CheckTask psiTask(formula.getRightSubformula()); - storm::modelchecker::SparsePropositionalModelChecker mc(info.getModel()); - success = mc.canHandle(phiTask) && mc.canHandle(psiTask); - STORM_LOG_ERROR_COND(success, "The subformulas of " << formula << " should be propositional."); + storm::modelchecker::SparsePropositionalModelChecker mc(info.model); + STORM_LOG_THROW(mc.canHandle(phiTask) && mc.canHandle(psiTask), storm::exceptions::InvalidPropertyException, "The subformulas of " << formula << " should be propositional."); storm::storage::BitVector phiStates = mc.check(phiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); - auto duplicatorResult = storm::transformer::StateDuplicator::transform(info.getModel(), ~phiStates | psiStates); + auto duplicatorResult = storm::transformer::StateDuplicator::transform(info.model, ~phiStates | psiStates); + info.model = std::move(*duplicatorResult.model); // duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula. // This might not be the actual original model. for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){ - originalModelStateIndex = info.getNewToOldStateIndexMapping()[originalModelStateIndex]; + originalModelStateIndex = info.newToOldStateIndexMapping[originalModelStateIndex]; } - info.setNewToOldStateIndexMapping(duplicatorResult.newToOldStateIndexMapping); + info.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping); // build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState - storm::storage::BitVector newPsiStates(duplicatorResult.model->getNumberOfStates(), false); + storm::storage::BitVector newPsiStates(info.model.getNumberOfStates(), false); for(auto const& oldPsiState : psiStates){ //note that psiStates are always located in the second copy newPsiStates.set(duplicatorResult.secondCopyOldToNewStateIndexMapping[oldPsiState], true); } - std::vector objectiveRewards = duplicatorResult.model->getTransitionMatrix().getConstrainedRowGroupSumVector(duplicatorResult.firstCopy, newPsiStates); - if(info.areNegativeRewardsConsidered()){ + std::vector objectiveRewards(info.model.getTransitionMatrix().getRowCount(), storm::utility::zero()); + for (auto const& firstCopyState : duplicatorResult.firstCopy) { + for (uint_fast64_t row = info.model.getTransitionMatrix().getRowGroupIndices()[firstCopyState]; row < info.model.getTransitionMatrix().getRowGroupIndices()[firstCopyState + 1]; ++row) { + objectiveRewards[row] = info.model.getTransitionMatrix().getConstrainedRowSum(row, newPsiStates); + } + } + if(info.negatedRewardsConsidered){ storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); } - - duplicatorResult.model->getRewardModels().insert(std::make_pair(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards))); - info.setModel(std::move(*duplicatorResult.model)); - - return success; + std::cout << objectiveRewards.size() << "==" << info.model.getTransitionMatrix().getRowCount() << "!=" << info.model.getNumberOfStates() << std::endl; + info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { - return preprocess(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), info, currentObjective); + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { + preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), info, currentObjective); } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective) { //TODO - STORM_LOG_ERROR("Globally not yet implemented"); - return false; + STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Globally not yet implemented"); } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { if(formula.isReachabilityProbabilityFormula()){ - return preprocess(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), info, currentObjective); + preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), info, currentObjective); + return; } - if (!formula.isReachabilityRewardFormula()){ - STORM_LOG_ERROR("The formula " << formula << " neither considers reachability Probabilities nor reachability rewards"); - return false; + STORM_LOG_THROW(formula.isReachabilityRewardFormula(), storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability Probabilities nor reachability rewards"); + + CheckTask targetTask(formula.getSubformula()); + storm::modelchecker::SparsePropositionalModelChecker mc(info.model); + STORM_LOG_THROW(mc.canHandle(targetTask), storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " should be propositional."); + storm::storage::BitVector targetStates = mc.check(targetTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); + + STORM_LOG_WARN("There is no check for reward finiteness yet"); //TODO + auto duplicatorResult = storm::transformer::StateDuplicator::transform(info.model, targetStates); + info.model = std::move(*duplicatorResult.model); + // duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula. + // This might not be the actual original model. + for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){ + originalModelStateIndex = info.newToOldStateIndexMapping[originalModelStateIndex]; } - //TODO - STORM_LOG_ERROR("Rewards not yet implemented"); - return false; + info.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping); + + // Add a reward model that gives zero reward to the states of the second copy. + std::vector objectiveRewards = info.model.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(info.model.getTransitionMatrix()); + storm::utility::vector::setVectorValues(objectiveRewards, duplicatorResult.secondCopy, storm::utility::zero()); + if(info.negatedRewardsConsidered){ + storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); + } + info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } template - bool SparseMdpMultiObjectivePreprocessingHelper::preprocess(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { - //TODO - STORM_LOG_ERROR("Rewards not yet implemented"); - return false; + void SparseMdpMultiObjectivePreprocessingHelper::preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { + std::vector objectiveRewards = info.model.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(info.model.getTransitionMatrix()); + if(info.negatedRewardsConsidered){ + storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); + } + info.model.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } - template class SparseMdpMultiObjectivePreprocessingHelper>; diff --git a/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h b/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h index a09939ee6..5adf1bda9 100644 --- a/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h +++ b/src/modelchecker/multiobjective/helper/SparseMdpMultiObjectivePreprocessingHelper.h @@ -3,7 +3,6 @@ #include "src/logic/Formulas.h" #include "src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h" -#include "src/storage/BitVector.h" namespace storm { namespace modelchecker { @@ -30,28 +29,38 @@ namespace storm { private: - static bool gatherObjectiveInformation(storm::logic::MultiObjectiveFormula const& formula, Information& info); - static bool setStepBoundOfObjective(typename Information::ObjectiveInformation& currentObjective); - static bool setWhetherNegativeRewardsAreConsidered(Information& info); + /*! + * Inserts the information regarding the given formula (i.e. objective) into info.objectives + * + * @param formula OperatorFormula representing the objective + * @param the information collected so far + */ + static void addObjective(std::shared_ptr const& formula, Information& info); /*! - * Apply the neccessary preprocessing for the given formula. - * @param formula the current (sub)formula - * @param info the current state of the preprocessing. - * @return true iff there was no error + * Sets the timeBound for the given objective */ - // State formulas (will transform the formula and the reward model) - static bool preprocess(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); - static bool preprocess(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void setStepBoundOfObjective(typename Information::ObjectiveInformation& currentObjective); - // Path formulas (will transform the model) - static bool preprocess(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); - static bool preprocess(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); - static bool preprocess(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); - static bool preprocess(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); - static bool preprocess(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); + /*! + * Sets whether we should consider negated rewards + */ + static void setWhetherNegatedRewardsAreConsidered(Information& info); - static storm::storage::BitVector checkPropositionalFormula(storm::logic::Formula propFormula, SparseMdpModelType const& model); + /*! + * Apply the neccessary preprocessing for the given formula. + * @param formula the current (sub)formula + * @param info the information collected so far + * @param currentObjective the currently considered objective. The given formula should be a a (sub)formula of this objective + * @param optionalRewardModelName the reward model name that is considered for the formula (if available) + */ + static void preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::RewardOperatorFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::UntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::BoundedUntilFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::GloballyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::EventuallyFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); + static void preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, Information& info, typename Information::ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); }; diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h index bc6be45b1..3ef2a3a6d 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveModelCheckerInformation.h @@ -3,6 +3,7 @@ #include #include +#include #include "src/logic/Formulas.h" @@ -13,8 +14,7 @@ namespace storm { namespace helper { template - class SparseMultiObjectiveModelCheckerInformation { - public : + struct SparseMultiObjectiveModelCheckerInformation { typedef typename SparseModelType::ValueType ValueType; typedef typename SparseModelType::RewardModelType RewardModelType; @@ -25,6 +25,27 @@ namespace storm { boost::optional threshold; std::string rewardModelName; boost::optional stepBound; + + void printInformationToStream(std::ostream& out) const { + out << std::setw(30) << originalFormula->toString(); + out << " \t("; + out << (originalFormulaMinimizes ? "minimizes, \t" : "maximizes, \t"); + out << "intern threshold:"; + if(threshold){ + out << std::setw(5) << (*threshold) << ","; + } else { + out << " none,"; + } + out << " \t"; + out << "intern reward model: " << std::setw(10) << rewardModelName << ", \t"; + out << "step bound:"; + if(stepBound) { + out << std::setw(5) << (*stepBound); + } else { + out << " none"; + } + out << ")" << std::endl; + } }; @@ -36,53 +57,33 @@ namespace storm { //Intentionally left empty } - void setModel(SparseModelType&& newModel){ - model = newModel; - } - - void setModel(SparseModelType const& newModel){ - model = newModel; - } - - SparseModelType const& getModel() const { - return model; - } - - void setNewToOldStateIndexMapping(std::vector const& newMapping){ - newToOldStateIndexMapping = newMapping; - } - - void setNewToOldStateIndexMapping(std::vector&& newMapping){ - newToOldStateIndexMapping = newMapping; - } - - std::vectorconst& getNewToOldStateIndexMapping() const{ - return newToOldStateIndexMapping; - } - - bool areNegativeRewardsConsidered() { - return negativeRewardsConsidered; - } - - void setNegativeRewardsConsidered(bool value){ - negativeRewardsConsidered = value; - } - - std::vector& getObjectives() { - return objectives; - } - std::vectorconst& getObjectives() const { - return objectives; - } - - - private: SparseModelType model; std::vector newToOldStateIndexMapping; - bool negativeRewardsConsidered; + bool negatedRewardsConsidered; std::vector objectives; + void printInformationToStream(std::ostream& out) { + out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; + out << " Multi-objective Model Checker Information " << std::endl; + out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; + out << std::endl; + out << "Objectives:" << std::endl; + out << "--------------------------------------------------------------" << std::endl; + for (auto const& obj : objectives) { + obj.printInformationToStream(out); + } + out << "--------------------------------------------------------------" << std::endl; + out << std::endl; + out << "Preprocessed Model Information:" << std::endl; + model.printModelInformationToStream(out); + out << std::endl; + if(negatedRewardsConsidered){ + out << "The rewards in the preprocessed model are negated" << std::endl; + out << std::endl; + } + out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; + } };