Browse Source

reworked checking whether parameter lifting is applicable

tempestpy_adaptions
TimQu 8 years ago
parent
commit
9425d3506e
  1. 5
      src/storm/transformer/ParameterLifter.cpp
  2. 117
      src/storm/utility/parameterlifting.h
  3. 2
      src/storm/utility/storm.h

5
src/storm/transformer/ParameterLifter.cpp

@ -245,11 +245,8 @@ namespace storm {
storm::utility::parametric::gatherOccurringVariables(simplifiedFunction, variablesInFunction); storm::utility::parametric::gatherOccurringVariables(simplifiedFunction, variablesInFunction);
AbstractValuation simplifiedValuation = valuation.getSubValuation(variablesInFunction); AbstractValuation simplifiedValuation = valuation.getSubValuation(variablesInFunction);
// insert the function and the valuation // insert the function and the valuation
auto insertionRes = collectedFunctions.insert(std::pair<FunctionValuation, ConstantType>(FunctionValuation(std::move(simplifiedFunction), std::move(simplifiedValuation)), storm::utility::one<ConstantType>()));
if(insertionRes.second) {
STORM_LOG_WARN_COND(storm::utility::parametric::isMultiLinearPolynomial(insertionRes.first->first.first), "Parameter lifting for non-multilinear polynomial " << insertionRes.first->first.first << " invoked. This might not be sound...");
}
//Note that references to elements of an unordered map remain valid after calling unordered_map::insert. //Note that references to elements of an unordered map remain valid after calling unordered_map::insert.
auto insertionRes = collectedFunctions.insert(std::pair<FunctionValuation, ConstantType>(FunctionValuation(std::move(simplifiedFunction), std::move(simplifiedValuation)), storm::utility::one<ConstantType>()));
return insertionRes.first->second; return insertionRes.first->second;
} }

117
src/storm/utility/parameterlifting.h

@ -1,11 +1,15 @@
#ifndef STORM_UTILITY_PARAMETERLIFTING_H #ifndef STORM_UTILITY_PARAMETERLIFTING_H
#define STORM_UTILITY_PARAMETERLIFTING_H #define STORM_UTILITY_PARAMETERLIFTING_H
#include <vector>
#include "storm/models/sparse/Model.h" #include "storm/models/sparse/Model.h"
#include "storm/utility/parametric.h" #include "storm/utility/parametric.h"
#include "storm/utility/macros.h" #include "storm/utility/macros.h"
#include "storm/logic/Formula.h" #include "storm/logic/Formula.h"
#include "storm/logic/FragmentSpecification.h" #include "storm/logic/FragmentSpecification.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/StandardRewardModel.h"
namespace storm { namespace storm {
@ -16,19 +20,124 @@ namespace storm {
* Checks whether the parameter lifting approach is sound on the given model with respect to the provided property * Checks whether the parameter lifting approach is sound on the given model with respect to the provided property
* *
* This method is taylored to an efficient but incomplete check, i.e., if false is returned, * This method is taylored to an efficient but incomplete check, i.e., if false is returned,
* parameter lifting might still be applicable. Checking this, however, would be more involved.
* parameter lifting might still be applicable.
*
* More precisely, we only check if the occurring functions are multilinear polynomials.
* However, Parameter Lifting also works for fractions of multilinear polynomials where for every state s,
* every probability and reward occurring at s have the same denominator.
* *
* @param model * @param model
* @param formula * @param formula
* @return true iff it was successfully validated that parameter lifting is sound on the provided model. * @return true iff it was successfully validated that parameter lifting is sound on the provided model.
*/ */
template<typename ValueType> template<typename ValueType>
static bool validateParameterLiftingSound(storm::models::sparse::Model<ValueType> const& model, storm::logic::Formula const& formula) {
switch (model.getType()) {
default:
static bool validateParameterLiftingSound(std::shared_ptr<storm::models::sparse::Model<ValueType>> const& model, std::shared_ptr<storm::logic::Formula const> const& formula) {
// Check whether all numbers occurring in the model are multilinear
// Transition matrix
if (model->isOfType(storm::models::ModelType::Dtmc) || model->isOfType(storm::models::ModelType::Mdp) || model->isOfType(storm::models::ModelType::Ctmc)) {
for (auto const& entry : model->getTransitionMatrix()) {
if (!storm::utility::parametric::isMultiLinearPolynomial(entry.getValue())) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as transition: '" << entry.getValue() << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
}
} else if (model->isOfType(storm::models::ModelType::MarkovAutomaton)) {
// Markov Automata store the probability matrix and the exit rate vector. However, we need to considert the rate matrix.
if (model->template as<storm::models::sparse::MarkovAutomaton<ValueType>>()->isClosed()) {
STORM_LOG_ERROR("parameter lifting requires a closed Markov automaton.");
return false;
}
auto const& rateVector = model->template as<storm::models::sparse::MarkovAutomaton<ValueType>>()->getExitRates();
auto const& markovianStates = model->template as<storm::models::sparse::MarkovAutomaton<ValueType>>()->getMarkovianStates();
for (uint_fast64_t state = 0; state < model->getNumberOfStates(); ++state) {
if (markovianStates.get(state)) {
auto const& exitRate = rateVector[state];
for (auto const& entry : model->getTransitionMatrix().getRowGroup(state)) {
if (!storm::utility::parametric::isMultiLinearPolynomial(storm::utility::simplify(entry.getValue() * exitRate))) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as transition: '" << entry.getValue() << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
}
} else {
for (auto const& entry : model->getTransitionMatrix().getRowGroup(state)) {
if (!storm::utility::parametric::isMultiLinearPolynomial(entry.getValue())) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as transition: '" << entry.getValue() << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
}
}
}
} else {
STORM_LOG_ERROR("Unsupported model type for parameter lifting.");
return false;
}
// Rewards
if (formula->isRewardOperatorFormula()) {
storm::models::sparse::StandardRewardModel<ValueType> const& rewardModel = formula->asRewardOperatorFormula().hasRewardModelName() ?
model->getRewardModel(formula->asRewardOperatorFormula().getRewardModelName()) :
model->getUniqueRewardModel();
if (rewardModel.hasStateRewards()) {
for (auto const& rew : rewardModel.getStateRewardVector()) {
if (!storm::utility::parametric::isMultiLinearPolynomial(rew)) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as state reward: '" << rew << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
}
}
// Parameters in transition rewards (and for continuous time models also action rewards) have to be disjoint from the probability/rate parameters.
// Note: This check could also be done action-wise.
std::set<typename storm::utility::parametric::VariableType<ValueType>::type> collectedRewardParameters;
if (rewardModel.hasStateActionRewards()) {
if (model->isOfType(storm::models::ModelType::Ctmc) || model->isOfType(storm::models::ModelType::MarkovAutomaton)) {
for (auto const& rew : rewardModel.getStateActionRewardVector()) {
if (!storm::utility::parametric::isMultiLinearPolynomial(rew)) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as action reward: '" << rew << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
storm::utility::parametric::gatherOccurringVariables(rew, collectedRewardParameters);
}
} else {
for (auto const& rew : rewardModel.getStateActionRewardVector()) {
if (!storm::utility::parametric::isMultiLinearPolynomial(rew)) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as action reward: '" << rew << "'. Can not validate that parameter lifting is sound on this model.");
return false; return false;
} }
} }
}
}
if (rewardModel.hasTransitionRewards()) {
for (auto const& rewEntry : rewardModel.getTransitionRewardMatrix()) {
if (!storm::utility::parametric::isMultiLinearPolynomial(rewEntry.getValue())) {
STORM_LOG_WARN("The input model contains a non-linear polynomial as transition reward: '" << rewEntry.getValue() << "'. Can not validate that parameter lifting is sound on this model.");
return false;
}
storm::utility::parametric::gatherOccurringVariables(rewEntry.getValue(), collectedRewardParameters);
}
}
if (!collectedRewardParameters.empty()) {
std::set<typename storm::utility::parametric::VariableType<ValueType>::type> transitionParameters = storm::models::sparse::getProbabilityParameters(*model);
auto rewParIt = collectedRewardParameters.begin();
auto trParIt = transitionParameters.begin();
while (rewParIt != collectedRewardParameters.end() && trParIt != transitionParameters.end()) {
if (*rewParIt == *trParIt) {
STORM_LOG_WARN("Parameter " << *trParIt << " occurs in a transition probability/rate and in a transition/action reward. Parameter lifting might not be sound on this model.");
return false;
}
if (*rewParIt < *trParIt) {
++rewParIt;
} else {
++trParIt;
}
}
}
}
return true;
}
} }
} }

2
src/storm/utility/storm.h

@ -326,7 +326,7 @@ namespace storm {
storm::utility::Stopwatch parameterLiftingStopWatch(true); storm::utility::Stopwatch parameterLiftingStopWatch(true);
std::shared_ptr<storm::logic::Formula const> consideredFormula = formula; std::shared_ptr<storm::logic::Formula const> consideredFormula = formula;
STORM_LOG_WARN_COND(storm::utility::parameterlifting::validateParameterLiftingSound(*markovModel, *formula), "Could not validate whether parameter lifting is sound on the input model and the formula " << *formula);
STORM_LOG_WARN_COND(storm::utility::parameterlifting::validateParameterLiftingSound(markovModel, formula), "Could not validate whether parameter lifting is sound on the input model and the formula " << *formula);
if (markovModel->isOfType(storm::models::ModelType::Ctmc) || markovModel->isOfType(storm::models::ModelType::MarkovAutomaton)) { if (markovModel->isOfType(storm::models::ModelType::Ctmc) || markovModel->isOfType(storm::models::ModelType::MarkovAutomaton)) {
STORM_PRINT_AND_LOG("Transforming continuous model to discrete model..."); STORM_PRINT_AND_LOG("Transforming continuous model to discrete model...");

Loading…
Cancel
Save