Browse Source

step bounded properties for dtmcs in a new helper, and now with support for (extra) lower bounds

tempestpy_adaptions
Sebastian Junges 4 years ago
parent
commit
843e6a9b6b
  1. 94
      src/storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.cpp
  2. 25
      src/storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.h
  3. 8
      src/storm/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp
  4. 37
      src/storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp
  5. 2
      src/storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h

94
src/storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.cpp

@ -0,0 +1,94 @@
#include "storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.h"
#include "storm/modelchecker/hints/ExplicitModelCheckerHint.h"
#include "storm/modelchecker/prctl/helper/DsMpiUpperRewardBoundsComputer.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/utility/graph.h"
#include "storm/storage/expressions/Expression.h"
#include "storm/solver/Multiplier.h"
#include "storm/utility/SignalHandler.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType>
SparseDeterministicStepBoundedHorizonHelper<ValueType>::SparseDeterministicStepBoundedHorizonHelper()
{
// Intentionally left empty.
}
template<typename ValueType>
std::vector<ValueType> SparseDeterministicStepBoundedHorizonHelper<ValueType>::compute(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint64_t lowerBound, uint64_t upperBound, ModelCheckerHint const& hint)
{
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates;
storm::storage::BitVector makeZeroColumns;
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) {
maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates();
} else {
maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, upperBound);
if (lowerBound == 0) {
maybeStates &= ~psiStates;
} else {
makeZeroColumns = psiStates;
}
}
STORM_LOG_INFO("Preprocessing: " << maybeStates.getNumberOfSetBits() << " non-target states with probability greater 0.");
if (lowerBound == 0) {
storm::utility::vector::setVectorValues<ValueType>(result, psiStates,
storm::utility::one<ValueType>());
}
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true, makeZeroColumns);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, submatrix);
if (lowerBound == 0) {
multiplier->repeatedMultiply(env, subresult, &b, upperBound);
} else {
multiplier->repeatedMultiply(env, subresult, &b, upperBound - lowerBound + 1);
submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, submatrix);
b = std::vector<ValueType>(b.size(), storm::utility::zero<ValueType>());
multiplier->repeatedMultiply(env, subresult, &b, lowerBound - 1);
}
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
return result;
}
template class SparseDeterministicStepBoundedHorizonHelper<double>;
template class SparseDeterministicStepBoundedHorizonHelper<storm::RationalNumber>;
template class SparseDeterministicStepBoundedHorizonHelper<storm::RationalFunction>;
}
}
}//
// Created by Sebastian Junges on 8/20/20.
//

25
src/storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.h

@ -0,0 +1,25 @@
#pragma once
#include "storm/modelchecker/hints/ModelCheckerHint.h"
#include "storm/modelchecker/prctl/helper/SolutionType.h"
#include "storm/storage/SparseMatrix.h"
#include "storm/utility/solver.h"
#include "storm/solver/SolveGoal.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType>
class SparseDeterministicStepBoundedHorizonHelper {
public:
SparseDeterministicStepBoundedHorizonHelper();
std::vector<ValueType> compute(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint64_t lowerBound, uint64_t upperBound, ModelCheckerHint const& hint = ModelCheckerHint());
private:
};
}
}
}

8
src/storm/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp

@ -1,4 +1,5 @@
#include "storm/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
#include "storm/modelchecker/helper/finitehorizon/SparseDeterministicStepBoundedHorizonHelper.h"
#include <vector>
#include <memory>
@ -70,15 +71,16 @@ namespace storm {
auto numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeRewardBoundedValues(env, this->getModel(), formula);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
} else {
STORM_LOG_THROW(!pathFormula.hasLowerBound() && pathFormula.hasUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have (a single) upper time bound, and no lower bound.");
STORM_LOG_THROW(pathFormula.hasIntegerLowerBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have discrete lower time bound.");
STORM_LOG_THROW(pathFormula.hasIntegerUpperBound(), storm::exceptions::InvalidPropertyException, "Formula needs to have discrete upper time bound.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeStepBoundedUntilProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getNonStrictUpperBound<uint64_t>(), checkTask.getHint());
storm::modelchecker::helper::SparseDeterministicStepBoundedHorizonHelper<ValueType> helper;
std::vector<ValueType> numericResult = helper.compute(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getNonStrictLowerBound<uint64_t>(), pathFormula.getNonStrictUpperBound<uint64_t>(), checkTask.getHint());
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
return result;
return result;
}
}

37
src/storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

@ -43,44 +43,7 @@
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeStepBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, ModelCheckerHint const& hint) {
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates;
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) {
maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates();
} else {
maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, stepBound);
maybeStates &= ~psiStates;
}
STORM_LOG_INFO("Preprocessing: " << maybeStates.getNumberOfSetBits() << " non-target states with probability greater 0.");
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, submatrix);
multiplier->repeatedMultiply(env, subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
return result;
}
template<>
std::map<storm::storage::sparse::state_type, storm::RationalFunction> SparseDtmcPrctlHelper<storm::RationalFunction>::computeRewardBoundedValues(Environment const& env, storm::models::sparse::Dtmc<storm::RationalFunction> const& model, std::shared_ptr<storm::logic::OperatorFormula const> rewardBoundedFormula) {

2
src/storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h

@ -28,8 +28,6 @@ namespace storm {
class SparseDtmcPrctlHelper {
public:
static std::vector<ValueType> computeStepBoundedUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, ModelCheckerHint const& hint = ModelCheckerHint());
static std::map<storm::storage::sparse::state_type, ValueType> computeRewardBoundedValues(Environment const& env, storm::models::sparse::Dtmc<ValueType> const& model, std::shared_ptr<storm::logic::OperatorFormula const> rewardBoundedFormula);
static std::vector<ValueType> computeNextProbabilities(Environment const& env, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates);

Loading…
Cancel
Save