Browse Source

Implemented LRA properties for the hybrid engine of MAs.

tempestpy_adaptions
Tim Quatmann 5 years ago
parent
commit
7bf1abe136
  1. 20
      src/storm/modelchecker/csl/HybridMarkovAutomatonCslModelChecker.cpp
  2. 2
      src/storm/modelchecker/csl/HybridMarkovAutomatonCslModelChecker.h
  3. 73
      src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.cpp
  4. 7
      src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.h

20
src/storm/modelchecker/csl/HybridMarkovAutomatonCslModelChecker.cpp

@ -27,7 +27,7 @@ namespace storm {
template <typename ModelType>
bool HybridMarkovAutomatonCslModelChecker<ModelType>::canHandleStatic(CheckTask<storm::logic::Formula, ValueType> const& checkTask) {
auto singleObjectiveFragment = storm::logic::csl().setGloballyFormulasAllowed(false).setNextFormulasAllowed(false).setRewardOperatorsAllowed(true).setReachabilityRewardFormulasAllowed(true).setTotalRewardFormulasAllowed(false).setTimeAllowed(true).setLongRunAverageProbabilitiesAllowed(false).setLongRunAverageRewardFormulasAllowed(false).setRewardAccumulationAllowed(true).setInstantaneousFormulasAllowed(false).setCumulativeRewardFormulasAllowed(false);
auto singleObjectiveFragment = storm::logic::csl().setGloballyFormulasAllowed(false).setNextFormulasAllowed(false).setRewardOperatorsAllowed(true).setReachabilityRewardFormulasAllowed(true).setTotalRewardFormulasAllowed(false).setTimeAllowed(true).setLongRunAverageProbabilitiesAllowed(true).setLongRunAverageRewardFormulasAllowed(true).setRewardAccumulationAllowed(true).setInstantaneousFormulasAllowed(false).setCumulativeRewardFormulasAllowed(false);
if (!storm::NumberTraits<ValueType>::SupportsExponential) {
singleObjectiveFragment.setBoundedUntilFormulasAllowed(false);
}
@ -96,6 +96,24 @@ namespace storm {
return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities<DdType, ValueType>(env, checkTask.getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRateVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), lowerBound, upperBound);
}
template<typename ModelType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslModelChecker<ModelType>::computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) {
storm::logic::StateFormula const& stateFormula = checkTask.getFormula();
std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula);
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(env, checkTask.getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector());
}
template<typename ModelType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslModelChecker<ModelType>::computeLongRunAverageRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula, ValueType> const& checkTask) {
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(env, checkTask.getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRateVector(), rewardModel.get());
}
// Explicitly instantiate the model checker.
template class HybridMarkovAutomatonCslModelChecker<storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double>>;
template class HybridMarkovAutomatonCslModelChecker<storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double>>;

2
src/storm/modelchecker/csl/HybridMarkovAutomatonCslModelChecker.h

@ -27,6 +27,8 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(Environment const& env, CheckTask<storm::logic::UntilFormula, ValueType> const& checkTask) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) override;
virtual std::unique_ptr<CheckResult> computeReachabilityTimes(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::EventuallyFormula, ValueType> const& checkTask) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula, ValueType> const& checkTask) override;
};

73
src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.cpp

@ -20,9 +20,8 @@
#include "storm/utility/Stopwatch.h"
#include "storm/exceptions/InvalidStateException.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/exceptions/NotSupportedException.h"
namespace storm {
namespace modelchecker {
@ -77,67 +76,73 @@ namespace storm {
}
/* template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates) {
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates) {
// Convert this query to an instance for the sparse engine.
storm::utility::Stopwatch conversionWatch(true);
// Create ODD for the translation.
storm::dd::Odd odd = model.getReachableStates().createOdd();
storm::storage::SparseMatrix<ValueType> explicitRateMatrix = rateMatrix.toMatrix(odd, odd);
storm::storage::SparseMatrix<ValueType> explicitTransitionMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
conversionWatch.stop();
STORM_LOG_INFO("Converting symbolic matrix/vector to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(env, storm::solver::SolveGoal<ValueType>(), explicitRateMatrix, psiStates.toVector(odd), &explicitExitRateVector);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(result)));
STORM_LOG_INFO("Converting symbolic matrix to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
auto explicitResult = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(env, dir, explicitTransitionMatrix, explicitTransitionMatrix.transpose(true), explicitExitRateVector, markovianStates.toVector(odd), psiStates.toVector(odd));
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(explicitResult)));
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, typename storm::models::symbolic::Model<DdType, ValueType>::RewardModelType const& rewardModel) {
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
storm::dd::Add<DdType, ValueType> probabilityMatrix = computeProbabilityMatrix(rateMatrix, exitRateVector);
std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, typename storm::models::symbolic::Model<DdType, ValueType>::RewardModelType const& rewardModel) {
// Convert this query to an instance for the sparse engine.
storm::utility::Stopwatch conversionWatch(true);
// Create ODD for the translation.
storm::dd::Odd odd = model.getReachableStates().createOdd();
storm::storage::SparseMatrix<ValueType> explicitRateMatrix = rateMatrix.toMatrix(odd, odd);
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
storm::storage::SparseMatrix<ValueType> explicitTransitionMatrix;
boost::optional<std::vector<ValueType>> optionalStateRewards, optionalStateActionRewards;
if (rewardModel.hasStateRewards()) {
optionalStateRewards = rewardModel.getStateRewardVector().toVector(odd);
}
if (rewardModel.hasStateActionRewards()) {
auto matrixRewards = transitionMatrix.toMatrixVector(rewardModel.getStateActionRewardVector(), model.getNondeterminismVariables(), odd, odd);
explicitTransitionMatrix = std::move(matrixRewards.first);
optionalStateActionRewards = std::move(matrixRewards.second);
} else {
explicitTransitionMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
}
STORM_LOG_THROW(!rewardModel.hasTransitionRewards(), storm::exceptions::NotSupportedException, "Transition rewards are not supported in this engine.");
storm::models::sparse::StandardRewardModel<ValueType> explicitRewardModel(optionalStateRewards, optionalStateActionRewards);
conversionWatch.stop();
STORM_LOG_INFO("Converting symbolic matrix/vector to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(env, storm::solver::SolveGoal<ValueType>(), explicitRateMatrix, rewardModel.getTotalRewardVector(probabilityMatrix, model.getColumnVariables(), exitRateVector, true).toVector(odd), &explicitExitRateVector);
STORM_LOG_INFO("Converting symbolic matrix to explicit representation done in " << conversionWatch.getTimeInMilliseconds() << "ms.");
auto explicitResult = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(env, dir, explicitTransitionMatrix, explicitTransitionMatrix.transpose(true), explicitExitRateVector, markovianStates.toVector(odd), explicitRewardModel);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(explicitResult)));
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(result)));
}
*/
// Explicit instantiations.
// Cudd, double.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::CUDD, double>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::CUDD> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, bool qualitative, double lowerBound, double upperBound);
/*
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& rateMatrix, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& rateMatrix, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::CUDD, double>::RewardModelType const& rewardModel);
*/
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::CUDD, double> const& model, storm::dd::Add<storm::dd::DdType::CUDD, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& markovianStates, storm::dd::Add<storm::dd::DdType::CUDD, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::CUDD, double>::RewardModelType const& rewardModel);
// Sylvan, double.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, bool qualitative, double lowerBound, double upperBound);
/* template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& rateMatrix, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& rateMatrix, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double>::RewardModelType const& rewardModel);
*/
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, double> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, double>::RewardModelType const& rewardModel);
// Sylvan, rational number.
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeReachabilityRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber>::RewardModelType const& rewardModel, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& targetStates, bool qualitative);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, bool qualitative, double lowerBound, double upperBound);
/* template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& rateMatrix, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& rateMatrix, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber>::RewardModelType const& rewardModel);
*/
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template std::unique_ptr<CheckResult> HybridMarkovAutomatonCslHelper::computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<storm::dd::DdType::Sylvan, storm::RationalNumber> const& model, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& markovianStates, storm::dd::Add<storm::dd::DdType::Sylvan, storm::RationalNumber> const& exitRateVector, typename storm::models::symbolic::Model<storm::dd::DdType::Sylvan, storm::RationalNumber>::RewardModelType const& rewardModel);
}
}

7
src/storm/modelchecker/csl/helper/HybridMarkovAutomatonCslHelper.h

@ -26,6 +26,13 @@ namespace storm {
template<storm::dd::DdType DdType, typename ValueType, typename std::enable_if<!storm::NumberTraits<ValueType>::SupportsExponential, int>::type = 0>
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, double lowerBound, double upperBound);
template<storm::dd::DdType DdType, typename ValueType>
static std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates);
template<storm::dd::DdType DdType, typename ValueType>
static std::unique_ptr<CheckResult> computeLongRunAverageRewards(Environment const& env, OptimizationDirection dir, storm::models::symbolic::MarkovAutomaton<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, storm::dd::Bdd<DdType> const& markovianStates, storm::dd::Add<DdType, ValueType> const& exitRateVector, typename storm::models::symbolic::Model<DdType, ValueType>::RewardModelType const& rewardModel);
};

Loading…
Cancel
Save