|
|
@ -68,27 +68,31 @@ namespace storm { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
STORM_LOG_DEBUG("End of Section 1"); |
|
|
|
// Value Iteration
|
|
|
|
auto cc = storm::utility::ConstantsComparator<ValueType>(); |
|
|
|
while (!finished && iteration < maxIterations) { |
|
|
|
STORM_LOG_DEBUG("Iteration " << std::to_string(iteration)); |
|
|
|
STORM_PRINT("Iteration " << std::to_string(iteration) << std::endl); |
|
|
|
bool improvement = false; |
|
|
|
for (size_t i = 0; i < beliefGrid.size(); ++i) { |
|
|
|
bool isTarget = beliefIsKnown[i]; |
|
|
|
if (!isTarget) { |
|
|
|
Belief<ValueType> currentBelief = beliefGrid[i]; |
|
|
|
STORM_LOG_DEBUG( |
|
|
|
"Check Belief " << currentBelief.id << ": ||" << currentBelief.observation << "|" |
|
|
|
<< currentBelief.probabilities << "||"); |
|
|
|
// we can take any state with the observation as they have the same number of choices
|
|
|
|
uint64_t numChoices = pomdp.getNumberOfChoices( |
|
|
|
pomdp.getStatesWithObservation(currentBelief.observation).front()); |
|
|
|
|
|
|
|
STORM_LOG_DEBUG("Number choices: " << std::to_string(numChoices)); |
|
|
|
// Initialize the values for the value iteration
|
|
|
|
ValueType bestValue = min ? storm::utility::infinity<ValueType>() |
|
|
|
ValueType chosenValue = min ? storm::utility::infinity<ValueType>() |
|
|
|
: -storm::utility::infinity<ValueType>(); |
|
|
|
uint64_t chosenActionIndex = std::numeric_limits<uint64_t>::infinity(); |
|
|
|
ValueType currentValue; |
|
|
|
|
|
|
|
for (uint64_t action = 0; action < numChoices; ++action) { |
|
|
|
currentValue = storm::utility::zero<ValueType>(); // simply change this for rewards?
|
|
|
|
|
|
|
|
for (auto iter = observationProbabilities[i][action].begin(); |
|
|
|
iter != observationProbabilities[i][action].end(); ++iter) { |
|
|
|
uint32_t observation = iter->first; |
|
|
@ -96,7 +100,7 @@ namespace storm { |
|
|
|
|
|
|
|
// compute subsimplex and lambdas according to the Lovejoy paper to approximate the next belief
|
|
|
|
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> temp = computeSubSimplexAndLambdas( |
|
|
|
currentBelief.probabilities, gridResolution); |
|
|
|
nextBelief.probabilities, gridResolution); |
|
|
|
std::vector<std::vector<ValueType>> subSimplex = temp.first; |
|
|
|
std::vector<ValueType> lambdas = temp.second; |
|
|
|
|
|
|
@ -107,21 +111,37 @@ namespace storm { |
|
|
|
getBeliefIdInGrid(beliefGrid, observation, subSimplex[j])); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
currentValue += iter->second * sum; |
|
|
|
} |
|
|
|
|
|
|
|
// Update the selected actions
|
|
|
|
auto cc = storm::utility::ConstantsComparator<ValueType>(); |
|
|
|
if ((min && cc.isLess(storm::utility::zero<ValueType>(), bestValue - currentValue)) || |
|
|
|
(!min && cc.isLess(storm::utility::zero<ValueType>(), currentValue - bestValue))) { |
|
|
|
improvement = true; |
|
|
|
bestValue = currentValue; |
|
|
|
if ((min && cc.isLess(storm::utility::zero<ValueType>(), chosenValue - currentValue)) || |
|
|
|
(!min && |
|
|
|
cc.isLess(storm::utility::zero<ValueType>(), currentValue - chosenValue))) { |
|
|
|
chosenValue = currentValue; |
|
|
|
chosenActionIndex = action; |
|
|
|
} |
|
|
|
// TODO tie breaker?
|
|
|
|
} |
|
|
|
result[currentBelief.id] = bestValue; |
|
|
|
result[currentBelief.id] = chosenValue; |
|
|
|
// Check if the iteration brought an improvement
|
|
|
|
if ((min && cc.isLess(storm::utility::zero<ValueType>(), |
|
|
|
result_backup[currentBelief.id] - result[currentBelief.id])) || |
|
|
|
(!min && cc.isLess(storm::utility::zero<ValueType>(), |
|
|
|
result[currentBelief.id] - result_backup[currentBelief.id]))) { |
|
|
|
if (min) { |
|
|
|
STORM_PRINT("Old: " << result_backup[currentBelief.id] << ", New: " |
|
|
|
<< result[currentBelief.id] << std::endl << "Delta: " |
|
|
|
<< result_backup[currentBelief.id] - result[currentBelief.id] |
|
|
|
<< std::endl); |
|
|
|
} else { |
|
|
|
STORM_PRINT("Old: " << result_backup[currentBelief.id] << ", New: " |
|
|
|
<< result[currentBelief.id] << std::endl << "Delta: " |
|
|
|
<< result_backup[currentBelief.id] - result[currentBelief.id] |
|
|
|
<< std::endl); |
|
|
|
} |
|
|
|
improvement = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
finished = !improvement; |
|
|
@ -150,7 +170,7 @@ namespace storm { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
STORM_LOG_DEBUG("Over-Approximation Result: " << overApprox); |
|
|
|
STORM_PRINT("Over-Approximation Result: " << overApprox << std::endl); |
|
|
|
} |
|
|
|
|
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
@ -171,8 +191,10 @@ namespace storm { |
|
|
|
template<typename ValueType, typename RewardModelType> |
|
|
|
Belief<ValueType> ApproximatePOMDPModelchecker<ValueType, RewardModelType>::getInitialBelief( |
|
|
|
storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, uint64_t id) { |
|
|
|
STORM_LOG_ASSERT(pomdp.getInitialStates().getNumberOfSetBits() > 1, |
|
|
|
STORM_LOG_ASSERT(pomdp.getInitialStates().getNumberOfSetBits() < 2, |
|
|
|
"POMDP contains more than one initial state"); |
|
|
|
STORM_LOG_ASSERT(pomdp.getInitialStates().getNumberOfSetBits() == 1, |
|
|
|
"POMDP does not contain an initial state"); |
|
|
|
std::vector<ValueType> distribution(pomdp.getNumberOfStates(), storm::utility::zero<ValueType>()); |
|
|
|
uint32_t observation = 0; |
|
|
|
for (uint64_t state = 0; state < pomdp.getNumberOfStates(); ++state) { |
|
|
@ -212,8 +234,8 @@ namespace storm { |
|
|
|
} else { |
|
|
|
// Otherwise we have to enumerate all possible distributions with regards to the grid
|
|
|
|
// helper is used to derive the distribution of the belief
|
|
|
|
std::vector<uint64_t> helper(statesWithObservation.size(), 0); |
|
|
|
helper[0] = gridResolution; |
|
|
|
std::vector<ValueType> helper(statesWithObservation.size(), ValueType(0)); |
|
|
|
helper[0] = storm::utility::convertNumber<ValueType>(gridResolution); |
|
|
|
bool done = false; |
|
|
|
uint64_t index = 0; |
|
|
|
|
|
|
@ -221,11 +243,13 @@ namespace storm { |
|
|
|
std::vector<ValueType> distribution(pomdp.getNumberOfStates(), |
|
|
|
storm::utility::zero<ValueType>()); |
|
|
|
for (size_t i = 0; i < statesWithObservation.size() - 1; ++i) { |
|
|
|
distribution[statesWithObservation[i]] = ValueType( |
|
|
|
double(helper[i] - helper[i + 1]) / gridResolution); |
|
|
|
distribution[statesWithObservation[i]] = (helper[i] - helper[i + 1]) / |
|
|
|
storm::utility::convertNumber<ValueType>( |
|
|
|
gridResolution); |
|
|
|
} |
|
|
|
distribution[statesWithObservation.back()] = ValueType( |
|
|
|
double(helper[statesWithObservation.size() - 1]) / gridResolution); |
|
|
|
distribution[statesWithObservation.back()] = |
|
|
|
helper[statesWithObservation.size() - 1] / |
|
|
|
storm::utility::convertNumber<ValueType>(gridResolution); |
|
|
|
|
|
|
|
Belief<ValueType> belief = {newId, observation, distribution}; |
|
|
|
STORM_LOG_TRACE( |
|
|
@ -233,7 +257,8 @@ namespace storm { |
|
|
|
<< ")," << distribution << "]"); |
|
|
|
grid.push_back(belief); |
|
|
|
beliefIsKnown.push_back(isTarget); |
|
|
|
if (helper[statesWithObservation.size() - 1] == gridResolution) { |
|
|
|
if (helper[statesWithObservation.size() - 1] == |
|
|
|
storm::utility::convertNumber<ValueType>(gridResolution)) { |
|
|
|
// If the last entry of helper is the gridResolution, we have enumerated all necessary distributions
|
|
|
|
done = true; |
|
|
|
} else { |
|
|
@ -281,10 +306,10 @@ namespace storm { |
|
|
|
|
|
|
|
std::vector<std::vector<ValueType>> qs; |
|
|
|
for (size_t i = 0; i < probabilities.size(); ++i) { |
|
|
|
std::vector<ValueType> q; |
|
|
|
std::vector<ValueType> q(probabilities.size(), storm::utility::zero<ValueType>()); |
|
|
|
if (i == 0) { |
|
|
|
for (size_t j = 0; j < probabilities.size(); ++j) { |
|
|
|
q[i] = v[i]; |
|
|
|
q[j] = v[j]; |
|
|
|
} |
|
|
|
qs.push_back(q); |
|
|
|
} else { |
|
|
|