Browse Source

more work on sparse game solver

Former-commit-id: df95038635
tempestpy_adaptions
dehnert 9 years ago
parent
commit
5521172ed1
  1. 66
      src/solver/GameSolver.cpp
  2. 12
      src/solver/GameSolver.h

66
src/solver/GameSolver.cpp

@ -1,17 +1,75 @@
#include "src/solver/GameSolver.h"
#include "src/storage/SparseMatrix.h"
#include "src/utility/vector.h"
namespace storm {
namespace solver {
GameSolver::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix) : AbstractGameSolver(), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix) : AbstractGameSolver(), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
// Intentionally left empty.
}
GameSolver::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : AbstractGameSolver(precision, maximalNumberOfIterations, relative), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
template <typename ValueType>
GameSolver<ValueType>::GameSolver(storm::storage::SparseMatrix<storm::storage::sparse::state_type> const& player1Matrix, storm::storage::SparseMatrix<ValueType> const& player2Matrix, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : AbstractGameSolver(precision, maximalNumberOfIterations, relative), player1Matrix(player1Matrix), player2Matrix(player2Matrix) {
// Intentionally left empty.
}
void GameSolver::solveGame(OptimizationDirection player1Goal, OptimizationDirection player2Goal, std::vector<ValueType>& x, storm::dd::Add<Type> const& b) const {
// TODO
template <typename ValueType>
void GameSolver<ValueType>::solveGame(OptimizationDirection player1Goal, OptimizationDirection player2Goal, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Set up the environment for value iteration.
uint_fast64_t numberOfPlayer1States = x.size();
bool converged = false;
std::vector<ValueType> tmpResult(numberOfPlayer1States);
std::vector<ValueType> nondetResult(player2Matrix.getRowCount());
std::vector<ValueType> player2Result(player2Matrix.getRowGroupCount());
// Now perform the actual value iteration.
uint_fast64_t iterations = 0;
do {
player2Matrix.multiplyWithVector(x, nondetResult);
storm::utility::vector::addVectors(b, nondetResult, nondetResult);
if (player2Goal == OptimizationDirection::Minimize) {
storm::utility::vector::reduceVectorMin(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
} else {
storm::utility::vector::reduceVectorMax(nondetResult, player2Result, player2Matrix.getRowGroupIndices());
}
for (uint_fast64_t pl1State = 0; pl1State < numberOfPlayer1States; ++pl1State) {
uint_fast64_t startRow = player1Matrix.getRowGroupIndices()[pl1State];
uint_fast64_t endRow = player1Matrix.getRowGroupIndices()[pl1State + 1];
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_rows relevantRows = player1Matrix.getRows(startRow, endRow - 1);
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator it = relevantRows.begin();
storm::storage::SparseMatrix<storm::storage::sparse::state_type>::const_iterator ite = relevantRows.end();
// Set the first value.
tmpResult[pl1State] = player2Result[it->getColumn()];
++it;
// Now iterate through the different values and pick the extremal one.
if (player1Goal == OptimizationDirection::Minimize) {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::min(tmpResult[pl1State], player2Result[it->getColumn()]);
}
} else {
for (; it != ite; ++it) {
tmpResult[pl1State] = std::max(tmpResult[pl1State], player2Result[it->getColumn()]);
}
}
}
// Check if the process converged and set up the new iteration in case we are not done.
converged = storm::utility::vector::equalModuloPrecision(x, tmpResult, precision, relative);
std::swap(x, tmpResult);
++iterations;
} while (!converged);
}
template class GameSolver<double>;
}
}

12
src/solver/GameSolver.h

@ -1,9 +1,19 @@
#ifndef STORM_SOLVER_GAMESOLVER_H_
#define STORM_SOLVER_GAMESOLVER_H_
#include <vector>
#include "src/solver/AbstractGameSolver.h"
#include "src/solver/OptimizationDirection.h"
#include "src/storage/sparse/StateType.h"
namespace storm {
namespace storage {
template<typename ValueType>
class SparseMatrix;
}
namespace solver {
template<typename ValueType>
class GameSolver : public AbstractGameSolver {
@ -37,7 +47,7 @@ namespace storm {
* @param b The vector to add after matrix-vector multiplication.
* @return The solution vector in the for of the vector x.
*/
virtual void solveGame(OptimizationDirection player1Goal, OptimizationDirection player2Goal, std::vector<ValueType>& x, storm::dd::Add<Type> const& b) const;
virtual void solveGame(OptimizationDirection player1Goal, OptimizationDirection player2Goal, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
private:
// The matrix defining the choices of player 1.

Loading…
Cancel
Save