Browse Source

improved structure in rewardunfolding

tempestpy_adaptions
TimQu 8 years ago
parent
commit
529526593b
  1. 239
      src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp
  2. 55
      src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h

239
src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp

@ -28,8 +28,17 @@ namespace storm {
template<typename ValueType>
void MultiDimensionalRewardUnfolding<ValueType>::initialize() {
// collect the time-bounded subobjectives
std::vector<std::vector<uint64_t>> epochSteps;
initializeObjectives(epochSteps);
initializePossibleEpochSteps(epochSteps);
initializeMemoryProduct(epochSteps);
}
template<typename ValueType>
void MultiDimensionalRewardUnfolding<ValueType>::initializeObjectives(std::vector<std::vector<uint64_t>>& epochSteps) {
// collect the time-bounded subobjectives
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
auto const& formula = *this->objectives[objIndex].formula;
if (formula.isProbabilityOperatorFormula()) {
@ -85,8 +94,10 @@ namespace storm {
}
objectiveDimensions.push_back(std::move(dimensions));
}
}
template<typename ValueType>
void MultiDimensionalRewardUnfolding<ValueType>::initializePossibleEpochSteps(std::vector<std::vector<uint64_t>> const& epochSteps) {
// collect which epoch steps are possible
possibleEpochSteps.clear();
for (uint64_t choiceIndex = 0; choiceIndex < epochSteps.front().size(); ++choiceIndex) {
@ -97,63 +108,18 @@ namespace storm {
}
possibleEpochSteps.insert(step);
}
}
template<typename ValueType>
void MultiDimensionalRewardUnfolding<ValueType>::initializeMemoryProduct(std::vector<std::vector<uint64_t>> const& epochSteps) {
// build the model x memory product
auto memoryStructure = computeMemoryStructure();
memoryStateMap = computeMemoryStateMap(memoryStructure);
productBuilder = std::make_shared<storm::storage::SparseModelMemoryProduct<ValueType>>(memoryStructure.product(model));
storm::storage::SparseModelMemoryProduct<ValueType> productBuilder(memoryStructure.product(model));
// todo: we only need to build the reachable states + the full model for each memory state encoding that all subObjectives of an objective are irrelevant
productBuilder->setBuildFullProduct();
modelMemoryProduct = productBuilder->build()->template as<storm::models::sparse::Mdp<ValueType>>();
productBuilder.setBuildFullProduct();
memoryProduct = MemoryProduct(productBuilder, epochSteps, memoryLabels);
productEpochSteps.resize(modelMemoryProduct->getNumberOfChoices());
for (uint64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) {
uint64_t numChoices = model.getTransitionMatrix().getRowGroupSize(modelState);
uint64_t firstChoice = model.getTransitionMatrix().getRowGroupIndices()[modelState];
for (uint64_t choiceOffset = 0; choiceOffset < numChoices; ++choiceOffset) {
Epoch step;
bool isZeroStep = true;
for (uint64_t dim = 0; dim < epochSteps.size(); ++dim) {
step.push_back(epochSteps[dim][firstChoice + choiceOffset]);
isZeroStep = isZeroStep && step.back() == 0;
}
if (!isZeroStep) {
for (uint64_t memState = 0; memState < memoryStateMap.size(); ++memState) {
uint64_t productState = getProductState(modelState, memState);
uint64_t productChoice = modelMemoryProduct->getTransitionMatrix().getRowGroupIndices()[productState] + choiceOffset;
assert(productChoice < modelMemoryProduct->getTransitionMatrix().getRowGroupIndices()[productState + 1]);
productEpochSteps[productChoice] = step;
}
}
}
}
modelStates.resize(modelMemoryProduct->getNumberOfStates());
memoryStates.resize(modelMemoryProduct->getNumberOfStates());
for (uint64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) {
for (uint64_t memoryState = 0; memoryState < memoryStructure.getNumberOfStates(); ++memoryState) {
uint64_t productState = getProductState(modelState, memoryState);
modelStates[productState] = modelState;
memoryStates[productState] = memoryState;
}
}
productChoiceToStateMapping.clear();
productChoiceToStateMapping.reserve(modelMemoryProduct->getNumberOfChoices());
for (uint64_t productState = 0; productState < modelMemoryProduct->getNumberOfStates(); ++productState) {
uint64_t groupSize = modelMemoryProduct->getTransitionMatrix().getRowGroupSize(productState);
for (uint64_t i = 0; i < groupSize; ++i) {
productChoiceToStateMapping.push_back(productState);
}
}
productAllowedBottomStates = storm::storage::BitVector(modelMemoryProduct->getNumberOfStates(), true);
for (auto const& modelState : allowedBottomStates) {
for (uint64_t memoryState = 0; memoryState < memoryStateMap.size(); ++memoryState) {
productAllowedBottomStates.set(getProductState(modelState, memoryState), true);
}
}
}
template<typename ValueType>
@ -222,12 +188,11 @@ namespace storm {
}
// Find out which objective rewards are earned in this particular epoch
epochModel.objectiveRewardFilter = std::vector<storm::storage::BitVector>(objectives.size(), storm::storage::BitVector(epochModel.objectiveRewards.front().size(), true));
for (auto const& reducedChoice : epochModel.stepChoices) {
uint64_t productChoice = ecElimResult.newToOldRowMapping[reducedChoice];
storm::storage::BitVector memoryState = convertMemoryState(getMemoryState(productChoiceToStateMapping[productChoice]));
Epoch successorEpoch = getSuccessorEpoch(epoch, productEpochSteps[productChoice].get());
storm::storage::BitVector memoryState = memoryProduct.convertMemoryState(memoryProduct.getMemoryState(memoryProduct.getProductStateFromChoice(productChoice)));
Epoch successorEpoch = getSuccessorEpoch(epoch, memoryProduct.getSteps()[productChoice].get());
for (uint64_t dim = 0; dim < successorEpoch.size(); ++dim) {
if (successorEpoch[dim] < 0 && memoryState.get(dim)) {
epochModel.objectiveRewardFilter[subObjectives[dim].second].set(reducedChoice, false);
@ -240,19 +205,19 @@ namespace storm {
auto stepSolIt = epochModel.stepSolutions.begin();
for (auto const& reducedChoice : epochModel.stepChoices) {
uint64_t productChoice = ecElimResult.newToOldRowMapping[reducedChoice];
uint64_t productState = productChoiceToStateMapping[productChoice];
auto relevantDimensions = convertMemoryState(getMemoryState(productState));
uint64_t productState = memoryProduct.getProductStateFromChoice(productChoice);
auto relevantDimensions = memoryProduct.convertMemoryState(memoryProduct.getMemoryState(productState));
SolutionType choiceSolution = getZeroSolution();
Epoch successorEpoch = getSuccessorEpoch(epoch, productEpochSteps[productChoice].get());
Epoch successorEpoch = getSuccessorEpoch(epoch, memoryProduct.getSteps()[productChoice].get());
storm::storage::BitVector successorRelevantDimensions(successorEpoch.size(), true);
for (auto const& dim : relevantDimensions) {
if (successorEpoch[dim] < 0) {
successorRelevantDimensions &= ~objectiveDimensions[subObjectives[dim].second];
}
}
for (auto const& successor : modelMemoryProduct->getTransitionMatrix().getRow(productChoice)) {
storm::storage::BitVector successorMemoryState = convertMemoryState(getMemoryState(successor.getColumn())) & successorRelevantDimensions;
uint64_t successorProductState = getProductState(getModelState(successor.getColumn()), convertMemoryState(successorMemoryState));
for (auto const& successor : memoryProduct.getProduct().getTransitionMatrix().getRow(productChoice)) {
storm::storage::BitVector successorMemoryState = memoryProduct.convertMemoryState(memoryProduct.getMemoryState(successor.getColumn())) & successorRelevantDimensions;
uint64_t successorProductState = memoryProduct.getProductState(memoryProduct.getModelState(successor.getColumn()), memoryProduct.convertMemoryState(successorMemoryState));
SolutionType const& successorSolution = getStateSolution(successorEpoch, successorProductState);
addScaledSolution(choiceSolution, successorSolution, successor.getValue());
}
@ -271,6 +236,17 @@ namespace storm {
currentEpoch = epoch;
/*
std::cout << "Epoch model for epoch " << storm::utility::vector::toString(epoch) << std::endl;
std::cout << "Matrix: " << std::endl << epochModel.epochMatrix << std::endl;
std::cout << "ObjectiveRewards: " << storm::utility::vector::toString(epochModel.objectiveRewards[0]) << std::endl;
std::cout << "steps: " << epochModel.stepChoices << std::endl;
std::cout << "step solutions: ";
for (int i = 0; i < epochModel.stepSolutions.size(); ++i) {
std::cout << " " << epochModel.stepSolutions[i].weightedValue;
}
std::cout << std::endl;
*/
return epochModel;
}
@ -279,9 +255,9 @@ namespace storm {
void MultiDimensionalRewardUnfolding<ValueType>::setCurrentEpochClass(Epoch const& epoch) {
auto productObjectiveRewards = computeObjectiveRewardsForProduct(epoch);
storm::storage::BitVector stepChoices(modelMemoryProduct->getNumberOfChoices(), false);
storm::storage::BitVector stepChoices(memoryProduct.getProduct().getNumberOfChoices(), false);
uint64_t choice = 0;
for (auto const& step : productEpochSteps) {
for (auto const& step : memoryProduct.getSteps()) {
if (step) {
auto eIt = epoch.begin();
for (auto const& s : step.get()) {
@ -294,15 +270,17 @@ namespace storm {
}
++choice;
}
epochModel.epochMatrix = modelMemoryProduct->getTransitionMatrix().filterEntries(~stepChoices);
epochModel.epochMatrix = memoryProduct.getProduct().getTransitionMatrix().filterEntries(~stepChoices);
storm::storage::BitVector zeroObjRewardChoices(modelMemoryProduct->getNumberOfChoices(), true);
storm::storage::BitVector zeroObjRewardChoices(memoryProduct.getProduct().getNumberOfChoices(), true);
for (auto const& objRewards : productObjectiveRewards) {
zeroObjRewardChoices &= storm::utility::vector::filterZero(objRewards);
}
ecElimResult = storm::transformer::EndComponentEliminator<ValueType>::transform(epochModel.epochMatrix, storm::storage::BitVector(modelMemoryProduct->getNumberOfStates(), true), zeroObjRewardChoices & ~stepChoices, productAllowedBottomStates);
// todo
storm::storage::BitVector value0EStates(memoryProduct.getProduct().getNumberOfStates(), true);
ecElimResult = storm::transformer::EndComponentEliminator<ValueType>::transform(epochModel.epochMatrix, storm::storage::BitVector(memoryProduct.getProduct().getNumberOfStates(), true), zeroObjRewardChoices & ~stepChoices, value0EStates);
epochModel.epochMatrix = std::move(ecElimResult.matrix);
epochModel.stepChoices = storm::storage::BitVector(epochModel.epochMatrix.getRowCount(), false);
@ -341,7 +319,7 @@ namespace storm {
template<typename ValueType>
void MultiDimensionalRewardUnfolding<ValueType>::setSolutionForCurrentEpoch(std::vector<SolutionType> const& reducedModelStateSolutions) {
for (uint64_t productState = 0; productState < modelMemoryProduct->getNumberOfStates(); ++productState) {
for (uint64_t productState = 0; productState < memoryProduct.getProduct().getNumberOfStates(); ++productState) {
uint64_t reducedModelState = ecElimResult.oldToNewStateMapping[productState];
if (reducedModelState < reducedModelStateSolutions.size()) {
setSolutionForCurrentEpoch(productState, reducedModelStateSolutions[reducedModelState]);
@ -368,7 +346,7 @@ namespace storm {
template<typename ValueType>
typename MultiDimensionalRewardUnfolding<ValueType>::SolutionType const& MultiDimensionalRewardUnfolding<ValueType>::getInitialStateResult(Epoch const& epoch) const {
return getStateSolution(epoch, *modelMemoryProduct->getInitialStates().begin());
return getStateSolution(epoch, *memoryProduct.getProduct().getInitialStates().begin());
}
@ -463,48 +441,113 @@ namespace storm {
}
template<typename ValueType>
std::vector<storm::storage::BitVector> MultiDimensionalRewardUnfolding<ValueType>::computeMemoryStateMap(storm::storage::MemoryStructure const& memory) const {
std::vector<storm::storage::BitVector> result;
for (uint64_t memState = 0; memState < memory.getNumberOfStates(); ++memState) {
storm::storage::BitVector relevantSubObjectives(subObjectives.size(), false);
std::set<std::string> stateLabels = memory.getStateLabeling().getLabelsOfState(memState);
for (uint64_t dim = 0; dim < subObjectives.size(); ++dim) {
MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::MemoryProduct(storm::storage::SparseModelMemoryProduct<ValueType>& productBuilder, std::vector<std::vector<uint64_t>> const& originalModelSteps, std::vector<boost::optional<std::string>> const& memoryLabels) {
product = productBuilder.build()->template as<storm::models::sparse::Mdp<ValueType>>();
uint64_t numModelStates = productBuilder.getOriginalModel().getNumberOfStates();
uint64_t numMemoryStates = productBuilder.getMemory().getNumberOfStates();
uint64_t numProductStates = getProduct().getNumberOfStates();
// Compute a mappings from product states to model/memory states and back
modelMemoryToProductStateMap.resize(numMemoryStates * numModelStates, std::numeric_limits<uint64_t>::max());
productToModelStateMap.resize(numProductStates, std::numeric_limits<uint64_t>::max());
productToMemoryStateMap.resize(numProductStates, std::numeric_limits<uint64_t>::max());
for (uint64_t modelState = 0; modelState < numModelStates; ++modelState) {
for (uint64_t memoryState = 0; memoryState < numMemoryStates; ++memoryState) {
uint64_t productState = productBuilder.getResultState(modelState, memoryState);
modelMemoryToProductStateMap[modelState * numMemoryStates + memoryState] = productState;
productToModelStateMap[productState] = modelState;
productToMemoryStateMap[productState] = memoryState;
}
}
// Map choice indices of the product to the state where it origins
choiceToStateMap.reserve(getProduct().getNumberOfChoices());
for (uint64_t productState = 0; productState < numProductStates; ++productState) {
uint64_t groupSize = getProduct().getTransitionMatrix().getRowGroupSize(productState);
for (uint64_t i = 0; i < groupSize; ++i) {
choiceToStateMap.push_back(productState);
}
}
// Compute a mapping between the different representations of memory states
for (uint64_t memState = 0; memState < numMemoryStates; ++memState) {
storm::storage::BitVector relevantSubObjectives(memoryLabels.size(), false);
std::set<std::string> stateLabels = productBuilder.getMemory().getStateLabeling().getLabelsOfState(memState);
for (uint64_t dim = 0; dim < memoryLabels.size(); ++dim) {
if (memoryLabels[dim] && stateLabels.find(memoryLabels[dim].get()) != stateLabels.end()) {
relevantSubObjectives.set(dim, true);
}
}
result.push_back(std::move(relevantSubObjectives));
memoryStateMap.push_back(std::move(relevantSubObjectives));
}
return result;
// Compute the epoch steps for the product
steps.resize(getProduct().getNumberOfChoices());
for (uint64_t modelState = 0; modelState < numModelStates; ++modelState) {
uint64_t numChoices = productBuilder.getOriginalModel().getTransitionMatrix().getRowGroupSize(modelState);
uint64_t firstChoice = productBuilder.getOriginalModel().getTransitionMatrix().getRowGroupIndices()[modelState];
for (uint64_t choiceOffset = 0; choiceOffset < numChoices; ++choiceOffset) {
Epoch step;
bool isZeroStep = true;
for (uint64_t dim = 0; dim < originalModelSteps.size(); ++dim) {
step.push_back(originalModelSteps[dim][firstChoice + choiceOffset]);
isZeroStep = isZeroStep && step.back() == 0;
}
if (!isZeroStep) {
for (uint64_t memState = 0; memState < numMemoryStates; ++memState) {
uint64_t productState = getProductState(modelState, memState);
uint64_t productChoice = getProduct().getTransitionMatrix().getRowGroupIndices()[productState] + choiceOffset;
assert(productChoice < getProduct().getTransitionMatrix().getRowGroupIndices()[productState + 1]);
steps[productChoice] = step;
}
}
}
}
}
template<typename ValueType>
storm::storage::BitVector const& MultiDimensionalRewardUnfolding<ValueType>::convertMemoryState(uint64_t const& memoryState) const {
return memoryStateMap[memoryState];
storm::models::sparse::Mdp<ValueType> const& MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getProduct() const {
return *product;
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::convertMemoryState(storm::storage::BitVector const& memoryState) const {
auto memStateIt = std::find(memoryStateMap.begin(), memoryStateMap.end(), memoryState);
return memStateIt - memoryStateMap.begin();
std::vector<boost::optional<typename MultiDimensionalRewardUnfolding<ValueType>::Epoch>> const& MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getSteps() const {
return steps;
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getProductState(uint64_t const& modelState, uint64_t const& memoryState) const {
STORM_LOG_ASSERT(!memoryStateMap.empty(), "Tried to retrieve a product state but the memoryStateMap is not yet initialized.");
STORM_LOG_ASSERT(modelMemoryToProductStateMap[modelState * memoryStateMap.size() + memoryState] < getProduct().getNumberOfStates(), "Tried to obtain a state in the model-memory-product that does not exist");
return modelMemoryToProductStateMap[modelState * memoryStateMap.size() + memoryState];
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::getProductState(uint64_t const& modelState, uint64_t const& memoryState) const {
uint64_t productState = productBuilder->getResultState(modelState, memoryState);
STORM_LOG_ASSERT(productState < modelMemoryProduct->getNumberOfStates(), "There is no state in the model-memory-product that corresponds to model state " << modelState << " and memory state " << memoryState << ".");
return productState;
uint64_t MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getModelState(uint64_t const& productState) const {
return productToModelStateMap[productState];
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::getModelState(uint64_t const& productState) const {
return modelStates[productState];
uint64_t MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getMemoryState(uint64_t const& productState) const {
return productToMemoryStateMap[productState];
}
template<typename ValueType>
storm::storage::BitVector const& MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::convertMemoryState(uint64_t const& memoryState) const {
return memoryStateMap[memoryState];
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::convertMemoryState(storm::storage::BitVector const& memoryState) const {
auto memStateIt = std::find(memoryStateMap.begin(), memoryStateMap.end(), memoryState);
return memStateIt - memoryStateMap.begin();
}
template<typename ValueType>
uint64_t MultiDimensionalRewardUnfolding<ValueType>::getMemoryState(uint64_t const& productState) const {
return memoryStates[productState];
uint64_t MultiDimensionalRewardUnfolding<ValueType>::MemoryProduct::getProductStateFromChoice(uint64_t const& productChoice) const {
return choiceToStateMap[productChoice];
}
template<typename ValueType>
@ -515,7 +558,7 @@ namespace storm {
for (uint64_t objIndex = 0; objIndex < objectives.size(); ++objIndex) {
auto const& formula = *this->objectives[objIndex].formula;
if (formula.isProbabilityOperatorFormula()) {
storm::modelchecker::SparsePropositionalModelChecker<storm::models::sparse::Mdp<ValueType>> mc(*modelMemoryProduct);
storm::modelchecker::SparsePropositionalModelChecker<storm::models::sparse::Mdp<ValueType>> mc(memoryProduct.getProduct());
std::vector<uint64_t> dimensionIndexMap;
for (auto const& globalDimensionIndex : objectiveDimensions[objIndex]) {
dimensionIndexMap.push_back(globalDimensionIndex);
@ -532,7 +575,7 @@ namespace storm {
}
sinkStatesFormula = std::make_shared<storm::logic::UnaryBooleanStateFormula>(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, sinkStatesFormula);
std::vector<ValueType> objRew(modelMemoryProduct->getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> objRew(memoryProduct.getProduct().getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
storm::storage::BitVector relevantObjectives(objectiveDimensions[objIndex].getNumberOfSetBits());
while (!relevantObjectives.full()) {
@ -566,10 +609,10 @@ namespace storm {
}
storm::storage::BitVector relevantStates = mc.check(*relevantStatesFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector();
storm::storage::BitVector relevantChoices = modelMemoryProduct->getTransitionMatrix().getRowFilter(relevantStates);
storm::storage::BitVector relevantChoices = memoryProduct.getProduct().getTransitionMatrix().getRowFilter(relevantStates);
storm::storage::BitVector goalStates = mc.check(*goalStatesFormula)->asExplicitQualitativeCheckResult().getTruthValuesVector();
for (auto const& choice : relevantChoices) {
objRew[choice] += modelMemoryProduct->getTransitionMatrix().getConstrainedRowSum(choice, goalStates);
objRew[choice] += memoryProduct.getProduct().getTransitionMatrix().getConstrainedRowSum(choice, goalStates);
}
}
}
@ -577,7 +620,7 @@ namespace storm {
objectiveRewards.push_back(std::move(objRew));
} else if (formula.isRewardOperatorFormula()) {
auto const& rewModel = modelMemoryProduct->getRewardModel(formula.asRewardOperatorFormula().getRewardModelName());
auto const& rewModel = memoryProduct.getProduct().getRewardModel(formula.asRewardOperatorFormula().getRewardModelName());
STORM_LOG_THROW(!rewModel.hasTransitionRewards(), storm::exceptions::NotSupportedException, "Reward model has transition rewards which is not expected.");
bool rewardCollectedInEpoch = true;
if (formula.getSubformula().isCumulativeRewardFormula()) {
@ -587,9 +630,9 @@ namespace storm {
STORM_LOG_THROW(formula.getSubformula().isTotalRewardFormula(), storm::exceptions::UnexpectedException, "Unexpected type of formula " << formula);
}
if (rewardCollectedInEpoch) {
objectiveRewards.push_back(rewModel.getTotalRewardVector(modelMemoryProduct->getTransitionMatrix()));
objectiveRewards.push_back(rewModel.getTotalRewardVector(memoryProduct.getProduct().getTransitionMatrix()));
} else {
objectiveRewards.emplace_back(modelMemoryProduct->getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
objectiveRewards.emplace_back(memoryProduct.getProduct().getTransitionMatrix().getRowCount(), storm::utility::zero<ValueType>());
}
} else {
STORM_LOG_THROW(false, storm::exceptions::UnexpectedException, "Unexpected type of formula " << formula);

55
src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h

@ -62,22 +62,49 @@ namespace storm {
private:
class MemoryProduct {
public:
MemoryProduct() = default;
MemoryProduct(storm::storage::SparseModelMemoryProduct<ValueType>& productBuilder, std::vector<std::vector<uint64_t>> const& originalModelSteps, std::vector<boost::optional<std::string>> const& memoryLabels);
storm::models::sparse::Mdp<ValueType> const& getProduct() const;
std::vector<boost::optional<Epoch>> const& getSteps() const;
uint64_t getProductState(uint64_t const& modelState, uint64_t const& memoryState) const;
uint64_t getModelState(uint64_t const& productState) const;
uint64_t getMemoryState(uint64_t const& productState) const;
uint64_t convertMemoryState(storm::storage::BitVector const& memoryState) const;
storm::storage::BitVector const& convertMemoryState(uint64_t const& memoryState) const;
uint64_t getProductStateFromChoice(uint64_t const& productChoice) const;
private:
std::shared_ptr<storm::models::sparse::Mdp<ValueType>> product;
std::vector<boost::optional<Epoch>> steps;
std::vector<uint64_t> modelMemoryToProductStateMap;
std::vector<uint64_t> productToModelStateMap;
std::vector<uint64_t> productToMemoryStateMap;
std::vector<uint64_t> choiceToStateMap;
std::vector<storm::storage::BitVector> memoryStateMap;
};
void setCurrentEpochClass(Epoch const& epoch);
void initialize();
EpochClass getClassOfEpoch(Epoch const& epoch) const;
Epoch getSuccessorEpoch(Epoch const& epoch, Epoch const& step) const;
std::vector<std::vector<ValueType>> computeObjectiveRewardsForProduct(Epoch const& epoch) const;
void initializeObjectives(std::vector<std::vector<uint64_t>>& epochSteps);
void initializePossibleEpochSteps(std::vector<std::vector<uint64_t>> const& epochSteps);
void initializeMemoryProduct(std::vector<std::vector<uint64_t>> const& epochSteps);
storm::storage::MemoryStructure computeMemoryStructure() const;
std::vector<storm::storage::BitVector> computeMemoryStateMap(storm::storage::MemoryStructure const& memory) const;
std::vector<std::vector<ValueType>> computeObjectiveRewardsForProduct(Epoch const& epoch) const;
storm::storage::BitVector const& convertMemoryState(uint64_t const& memoryState) const;
uint64_t convertMemoryState(storm::storage::BitVector const& memoryState) const;
uint64_t getProductState(uint64_t const& modelState, uint64_t const& memoryState) const;
uint64_t getModelState(uint64_t const& productState) const;
uint64_t getMemoryState(uint64_t const& productState) const;
EpochClass getClassOfEpoch(Epoch const& epoch) const;
Epoch getSuccessorEpoch(Epoch const& epoch, Epoch const& step) const;
SolutionType getZeroSolution() const;
void addScaledSolution(SolutionType& solution, SolutionType const& solutionToAdd, ValueType const& scalingFactor) const;
@ -90,14 +117,8 @@ namespace storm {
storm::storage::BitVector possibleECActions;
storm::storage::BitVector allowedBottomStates;
std::shared_ptr<storm::models::sparse::Mdp<ValueType>> modelMemoryProduct;
std::shared_ptr<storm::storage::SparseModelMemoryProduct<ValueType>> productBuilder;
std::vector<storm::storage::BitVector> memoryStateMap;
std::vector<boost::optional<Epoch>> productEpochSteps;
storm::storage::BitVector productAllowedBottomStates;
std::vector<uint64_t> modelStates;
std::vector<uint64_t> memoryStates;
std::vector<uint64_t> productChoiceToStateMapping;
MemoryProduct memoryProduct;
typename storm::transformer::EndComponentEliminator<ValueType>::EndComponentEliminatorReturnType ecElimResult;
std::set<Epoch> possibleEpochSteps;

Loading…
Cancel
Save