|
|
@ -8,7 +8,6 @@ |
|
|
|
#include "storm/models/sparse/StandardRewardModel.h"
|
|
|
|
#include "storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
|
|
|
|
#include "storm/solver/MinMaxLinearEquationSolver.h"
|
|
|
|
#include "storm/transformer/EndComponentEliminator.h"
|
|
|
|
#include "storm/utility/graph.h"
|
|
|
|
#include "storm/utility/macros.h"
|
|
|
|
#include "storm/utility/vector.h"
|
|
|
@ -154,26 +153,14 @@ namespace storm { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
// Only consider the states from which a transition with non-zero reward is reachable. (The remaining states always have reward zero).
|
|
|
|
storm::storage::BitVector zeroRewardActions = storm::utility::vector::filterZero(weightedRewardVector); |
|
|
|
storm::storage::BitVector nonZeroRewardActions = ~zeroRewardActions; |
|
|
|
storm::storage::BitVector nonZeroRewardStates(this->model.getNumberOfStates(), false); |
|
|
|
for(uint_fast64_t state = 0; state < this->model.getNumberOfStates(); ++state){ |
|
|
|
if(nonZeroRewardActions.getNextSetIndex(this->model.getTransitionMatrix().getRowGroupIndices()[state]) < this->model.getTransitionMatrix().getRowGroupIndices()[state+1]) { |
|
|
|
nonZeroRewardStates.set(state); |
|
|
|
} |
|
|
|
} |
|
|
|
storm::storage::BitVector subsystemStates = storm::utility::graph::performProbGreater0E(this->model.getTransitionMatrix().transpose(true), storm::storage::BitVector(this->model.getNumberOfStates(), true), nonZeroRewardStates); |
|
|
|
updateEcElimResult(weightedRewardVector); |
|
|
|
|
|
|
|
// Remove neutral end components, i.e., ECs in which no reward is earned.
|
|
|
|
auto ecEliminatorResult = storm::transformer::EndComponentEliminator<ValueType>::transform(this->model.getTransitionMatrix(), subsystemStates, possibleECActions & zeroRewardActions, possibleBottomStates); |
|
|
|
|
|
|
|
std::vector<ValueType> subRewardVector(ecEliminatorResult.newToOldRowMapping.size()); |
|
|
|
storm::utility::vector::selectVectorValues(subRewardVector, ecEliminatorResult.newToOldRowMapping, weightedRewardVector); |
|
|
|
std::vector<ValueType> subResult(ecEliminatorResult.matrix.getRowGroupCount()); |
|
|
|
std::vector<ValueType> subRewardVector(cachedEcElimResult->newToOldRowMapping.size()); |
|
|
|
storm::utility::vector::selectVectorValues(subRewardVector, cachedEcElimResult->newToOldRowMapping, weightedRewardVector); |
|
|
|
std::vector<ValueType> subResult(cachedEcElimResult->matrix.getRowGroupCount()); |
|
|
|
|
|
|
|
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> solverFactory; |
|
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = solverFactory.create(ecEliminatorResult.matrix); |
|
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = solverFactory.create(cachedEcElimResult->matrix); |
|
|
|
solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); |
|
|
|
solver->setTrackScheduler(true); |
|
|
|
if (lowerResultBound) { |
|
|
@ -186,7 +173,7 @@ namespace storm { |
|
|
|
|
|
|
|
this->weightedResult = std::vector<ValueType>(this->model.getNumberOfStates()); |
|
|
|
|
|
|
|
transformReducedSolutionToOriginalModel(ecEliminatorResult.matrix, subResult, solver->getSchedulerChoices(), ecEliminatorResult.newToOldRowMapping, ecEliminatorResult.oldToNewStateMapping, this->weightedResult, this->optimalChoices); |
|
|
|
transformReducedSolutionToOriginalModel(cachedEcElimResult->matrix, subResult, solver->getSchedulerChoices(), cachedEcElimResult->newToOldRowMapping, cachedEcElimResult->oldToNewStateMapping, this->weightedResult, this->optimalChoices); |
|
|
|
} |
|
|
|
|
|
|
|
template <class SparseModelType> |
|
|
@ -274,6 +261,29 @@ namespace storm { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <class SparseModelType> |
|
|
|
void SparsePcaaWeightVectorChecker<SparseModelType>::updateEcElimResult(std::vector<ValueType> const& weightedRewardVector) { |
|
|
|
// Check whether we need to update the currently cached ecElimResult
|
|
|
|
storm::storage::BitVector newZeroRewardChoices = storm::utility::vector::filterZero(weightedRewardVector); |
|
|
|
if (!cachedZeroRewardChoices || cachedZeroRewardChoices.get() != newZeroRewardChoices) { |
|
|
|
cachedZeroRewardChoices = std::move(newZeroRewardChoices); |
|
|
|
|
|
|
|
// It is sufficient to consider the states from which a transition with non-zero reward is reachable. (The remaining states always have reward zero).
|
|
|
|
storm::storage::BitVector nonZeroRewardStates(this->model.getNumberOfStates(), false); |
|
|
|
for (uint_fast64_t state = 0; state < this->model.getNumberOfStates(); ++state){ |
|
|
|
if (cachedZeroRewardChoices->getNextUnsetIndex(this->model.getTransitionMatrix().getRowGroupIndices()[state]) < this->model.getTransitionMatrix().getRowGroupIndices()[state+1]) { |
|
|
|
nonZeroRewardStates.set(state); |
|
|
|
} |
|
|
|
} |
|
|
|
storm::storage::BitVector subsystemStates = storm::utility::graph::performProbGreater0E(this->model.getTransitionMatrix().transpose(true), storm::storage::BitVector(this->model.getNumberOfStates(), true), nonZeroRewardStates); |
|
|
|
|
|
|
|
// Remove neutral end components, i.e., ECs in which no reward is earned.
|
|
|
|
cachedEcElimResult = storm::transformer::EndComponentEliminator<ValueType>::transform(this->model.getTransitionMatrix(), subsystemStates, possibleECActions & cachedZeroRewardChoices.get(), possibleBottomStates); |
|
|
|
} |
|
|
|
STORM_LOG_ASSERT(cachedEcElimResult, "Updating the ecElimResult was not successfull."); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template <class SparseModelType> |
|
|
|
void SparsePcaaWeightVectorChecker<SparseModelType>::transformReducedSolutionToOriginalModel(storm::storage::SparseMatrix<ValueType> const& reducedMatrix, |
|
|
|
std::vector<ValueType> const& reducedSolution, |