Browse Source

implemented caching of the EC elimination result in the standard weight vector checker

tempestpy_adaptions
TimQu 8 years ago
parent
commit
31af523ea1
  1. 48
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp
  2. 7
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

48
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp

@ -8,7 +8,6 @@
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/transformer/EndComponentEliminator.h"
#include "storm/utility/graph.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
@ -154,26 +153,14 @@ namespace storm {
return;
}
// Only consider the states from which a transition with non-zero reward is reachable. (The remaining states always have reward zero).
storm::storage::BitVector zeroRewardActions = storm::utility::vector::filterZero(weightedRewardVector);
storm::storage::BitVector nonZeroRewardActions = ~zeroRewardActions;
storm::storage::BitVector nonZeroRewardStates(this->model.getNumberOfStates(), false);
for(uint_fast64_t state = 0; state < this->model.getNumberOfStates(); ++state){
if(nonZeroRewardActions.getNextSetIndex(this->model.getTransitionMatrix().getRowGroupIndices()[state]) < this->model.getTransitionMatrix().getRowGroupIndices()[state+1]) {
nonZeroRewardStates.set(state);
}
}
storm::storage::BitVector subsystemStates = storm::utility::graph::performProbGreater0E(this->model.getTransitionMatrix().transpose(true), storm::storage::BitVector(this->model.getNumberOfStates(), true), nonZeroRewardStates);
// Remove neutral end components, i.e., ECs in which no reward is earned.
auto ecEliminatorResult = storm::transformer::EndComponentEliminator<ValueType>::transform(this->model.getTransitionMatrix(), subsystemStates, possibleECActions & zeroRewardActions, possibleBottomStates);
updateEcElimResult(weightedRewardVector);
std::vector<ValueType> subRewardVector(ecEliminatorResult.newToOldRowMapping.size());
storm::utility::vector::selectVectorValues(subRewardVector, ecEliminatorResult.newToOldRowMapping, weightedRewardVector);
std::vector<ValueType> subResult(ecEliminatorResult.matrix.getRowGroupCount());
std::vector<ValueType> subRewardVector(cachedEcElimResult->newToOldRowMapping.size());
storm::utility::vector::selectVectorValues(subRewardVector, cachedEcElimResult->newToOldRowMapping, weightedRewardVector);
std::vector<ValueType> subResult(cachedEcElimResult->matrix.getRowGroupCount());
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> solverFactory;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = solverFactory.create(ecEliminatorResult.matrix);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = solverFactory.create(cachedEcElimResult->matrix);
solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
solver->setTrackScheduler(true);
if (lowerResultBound) {
@ -186,7 +173,7 @@ namespace storm {
this->weightedResult = std::vector<ValueType>(this->model.getNumberOfStates());
transformReducedSolutionToOriginalModel(ecEliminatorResult.matrix, subResult, solver->getSchedulerChoices(), ecEliminatorResult.newToOldRowMapping, ecEliminatorResult.oldToNewStateMapping, this->weightedResult, this->optimalChoices);
transformReducedSolutionToOriginalModel(cachedEcElimResult->matrix, subResult, solver->getSchedulerChoices(), cachedEcElimResult->newToOldRowMapping, cachedEcElimResult->oldToNewStateMapping, this->weightedResult, this->optimalChoices);
}
template <class SparseModelType>
@ -274,6 +261,29 @@ namespace storm {
}
}
template <class SparseModelType>
void SparsePcaaWeightVectorChecker<SparseModelType>::updateEcElimResult(std::vector<ValueType> const& weightedRewardVector) {
// Check whether we need to update the currently cached ecElimResult
storm::storage::BitVector newZeroRewardChoices = storm::utility::vector::filterZero(weightedRewardVector);
if (!cachedZeroRewardChoices || cachedZeroRewardChoices.get() != newZeroRewardChoices) {
cachedZeroRewardChoices = std::move(newZeroRewardChoices);
// It is sufficient to consider the states from which a transition with non-zero reward is reachable. (The remaining states always have reward zero).
storm::storage::BitVector nonZeroRewardStates(this->model.getNumberOfStates(), false);
for (uint_fast64_t state = 0; state < this->model.getNumberOfStates(); ++state){
if (cachedZeroRewardChoices->getNextUnsetIndex(this->model.getTransitionMatrix().getRowGroupIndices()[state]) < this->model.getTransitionMatrix().getRowGroupIndices()[state+1]) {
nonZeroRewardStates.set(state);
}
}
storm::storage::BitVector subsystemStates = storm::utility::graph::performProbGreater0E(this->model.getTransitionMatrix().transpose(true), storm::storage::BitVector(this->model.getNumberOfStates(), true), nonZeroRewardStates);
// Remove neutral end components, i.e., ECs in which no reward is earned.
cachedEcElimResult = storm::transformer::EndComponentEliminator<ValueType>::transform(this->model.getTransitionMatrix(), subsystemStates, possibleECActions & cachedZeroRewardChoices.get(), possibleBottomStates);
}
STORM_LOG_ASSERT(cachedEcElimResult, "Updating the ecElimResult was not successfull.");
}
template <class SparseModelType>
void SparsePcaaWeightVectorChecker<SparseModelType>::transformReducedSolutionToOriginalModel(storm::storage::SparseMatrix<ValueType> const& reducedMatrix,
std::vector<ValueType> const& reducedSolution,

7
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

@ -3,6 +3,7 @@
#include "storm/storage/BitVector.h"
#include "storm/storage/SparseMatrix.h"
#include "storm/storage/Scheduler.h"
#include "storm/transformer/EndComponentEliminator.h"
#include "storm/modelchecker/multiobjective/Objective.h"
#include "storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.h"
#include "storm/utility/vector.h"
@ -90,6 +91,8 @@ namespace storm {
*/
virtual void boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) = 0;
void updateEcElimResult(std::vector<ValueType> const& weightedRewardVector);
/*!
* Transforms the results of a min-max-solver that considers a reduced model (without end components) to a result for the original (unreduced) model
*/
@ -127,6 +130,10 @@ namespace storm {
std::vector<ValueType> offsetsToOverApproximation;
// The scheduler choices that optimize the weighted rewards of undounded objectives.
std::vector<uint_fast64_t> optimalChoices;
// Caches the result of the ec elimination (avoiding recomputations for each weightvector)
boost::optional<typename storm::transformer::EndComponentEliminator<ValueType>::EndComponentEliminatorReturnType> cachedEcElimResult;
// Stores which choices are considered to have zero reward in the current cachedEcElimiResult.
boost::optional<storm::storage::BitVector> cachedZeroRewardChoices;
};

Loading…
Cancel
Save