Browse Source

Renamed lower/upper bounds to under/over approximation in weightVectorCheckers

tempestpy_adaptions
TimQu 8 years ago
parent
commit
1649d47d66
  1. 8
      src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp
  2. 2
      src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h
  3. 4
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.cpp
  4. 8
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuery.cpp
  5. 21
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp
  6. 37
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

8
src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp

@ -268,11 +268,11 @@ namespace storm {
errorAwayFromZero += digitizationError;
}
if (storm::solver::maximize(obj.optimizationDirection)) {
this->offsetsToLowerBound[objIndex] = -errorTowardsZero;
this->offsetsToUpperBound[objIndex] = errorAwayFromZero;
this->offsetsToUnderApproximation[objIndex] = -errorTowardsZero;
this->offsetsToOverApproximation[objIndex] = errorAwayFromZero;
} else {
this->offsetsToLowerBound[objIndex] = errorAwayFromZero;
this->offsetsToUpperBound[objIndex] = -errorTowardsZero;
this->offsetsToUnderApproximation[objIndex] = errorAwayFromZero;
this->offsetsToOverApproximation[objIndex] = -errorTowardsZero;
}
}
}

2
src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h

@ -106,7 +106,7 @@ namespace storm {
void digitize(SubModel& subModel, VT const& digitizationConstant) const;
/*
* Fills the given map with the digitized time bounds. Also sets the offsetsToLowerBound / offsetsToUpperBound values
* Fills the given map with the digitized time bounds. Also sets the offsetsToUnderApproximation / offsetsToOverApproximation values
* according to the digitization error
*/
template <typename VT = ValueType, typename std::enable_if<storm::NumberTraits<VT>::SupportsExponential, int>::type = 0>

4
src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.cpp

@ -47,8 +47,8 @@ namespace storm {
stepBoundIt->second.set(objIndex);
// There is no error for the values of these objectives.
this->offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToUnderApproximation[objIndex] = storm::utility::zero<ValueType>();
this->offsetsToOverApproximation[objIndex] = storm::utility::zero<ValueType>();
}
}

8
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuery.cpp

@ -94,12 +94,12 @@ namespace storm {
// Normalize the direction vector so that the entries sum up to one
storm::utility::vector::scaleVectorInPlace(direction, storm::utility::one<GeometryValueType>() / std::accumulate(direction.begin(), direction.end(), storm::utility::zero<GeometryValueType>()));
weightVectorChecker->check(storm::utility::vector::convertNumericVector<typename SparseModelType::ValueType>(direction));
STORM_LOG_DEBUG("weighted objectives checker result (lower bounds) is " << storm::utility::vector::toString(storm::utility::vector::convertNumericVector<double>(weightVectorChecker->getLowerBoundsOfInitialStateResults())));
STORM_LOG_DEBUG("weighted objectives checker result (under approximation) is " << storm::utility::vector::toString(storm::utility::vector::convertNumericVector<double>(weightVectorChecker->getUnderApproximationOfInitialStateResults())));
RefinementStep step;
step.weightVector = direction;
step.lowerBoundPoint = storm::utility::vector::convertNumericVector<GeometryValueType>(weightVectorChecker->getLowerBoundsOfInitialStateResults());
step.upperBoundPoint = storm::utility::vector::convertNumericVector<GeometryValueType>(weightVectorChecker->getUpperBoundsOfInitialStateResults());
// For the minimizing objectives, we need to scale the corresponding entries with -1 in order to consider the downward closure
step.lowerBoundPoint = storm::utility::vector::convertNumericVector<GeometryValueType>(weightVectorChecker->getUnderApproximationOfInitialStateResults());
step.upperBoundPoint = storm::utility::vector::convertNumericVector<GeometryValueType>(weightVectorChecker->getOverApproximationOfInitialStateResults());
// For the minimizing objectives, we need to scale the corresponding entries with -1 as we want to consider the downward closure
for (uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if (storm::solver::minimize(this->objectives[objIndex].optimizationDirection)) {
step.lowerBoundPoint[objIndex] *= -storm::utility::one<GeometryValueType>();

21
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp

@ -36,8 +36,8 @@ namespace storm {
discreteActionRewards(objectives.size()),
checkHasBeenCalled(false),
objectiveResults(objectives.size()),
offsetsToLowerBound(objectives.size()),
offsetsToUpperBound(objectives.size()) {
offsetsToUnderApproximation(objectives.size()),
offsetsToOverApproximation(objectives.size()) {
// set data for unbounded objectives
for(uint_fast64_t objIndex = 0; objIndex < objectives.size(); ++objIndex) {
@ -94,10 +94,9 @@ namespace storm {
break;
}
}
STORM_LOG_INFO("Weight vector check done. Lower bounds for results in initial state: " << storm::utility::vector::toString(storm::utility::vector::convertNumericVector<double>(getLowerBoundsOfInitialStateResults())));
STORM_LOG_INFO("Weight vector check done. Lower bounds for results in initial state: " << storm::utility::vector::toString(storm::utility::vector::convertNumericVector<double>(getUnderApproximationOfInitialStateResults())));
// Validate that the results are sufficiently precise
ValueType resultingWeightedPrecision = storm::utility::vector::dotProduct(getUpperBoundsOfInitialStateResults(), weightVector) - storm::utility::vector::dotProduct(getLowerBoundsOfInitialStateResults(), weightVector);
STORM_LOG_THROW(resultingWeightedPrecision >= storm::utility::zero<ValueType>(), storm::exceptions::UnexpectedException, "The distance between the lower and the upper result is negative.");
ValueType resultingWeightedPrecision = storm::utility::abs(storm::utility::vector::dotProduct(getOverApproximationOfInitialStateResults(), weightVector) - storm::utility::vector::dotProduct(getUnderApproximationOfInitialStateResults(), weightVector));
resultingWeightedPrecision /= storm::utility::sqrt(storm::utility::vector::dotProduct(weightVector, weightVector));
STORM_LOG_THROW(resultingWeightedPrecision <= weightedPrecision, storm::exceptions::UnexpectedException, "The desired precision was not reached");
}
@ -113,25 +112,25 @@ namespace storm {
}
template <class SparseModelType>
std::vector<typename SparsePcaaWeightVectorChecker<SparseModelType>::ValueType> SparsePcaaWeightVectorChecker<SparseModelType>::getLowerBoundsOfInitialStateResults() const {
std::vector<typename SparsePcaaWeightVectorChecker<SparseModelType>::ValueType> SparsePcaaWeightVectorChecker<SparseModelType>::getUnderApproximationOfInitialStateResults() const {
STORM_LOG_THROW(checkHasBeenCalled, storm::exceptions::IllegalFunctionCallException, "Tried to retrieve results but check(..) has not been called before.");
uint_fast64_t initstate = *this->model.getInitialStates().begin();
std::vector<ValueType> res;
res.reserve(this->objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
res.push_back(this->objectiveResults[objIndex][initstate] + this->offsetsToLowerBound[objIndex]);
res.push_back(this->objectiveResults[objIndex][initstate] + this->offsetsToUnderApproximation[objIndex]);
}
return res;
}
template <class SparseModelType>
std::vector<typename SparsePcaaWeightVectorChecker<SparseModelType>::ValueType> SparsePcaaWeightVectorChecker<SparseModelType>::getUpperBoundsOfInitialStateResults() const {
std::vector<typename SparsePcaaWeightVectorChecker<SparseModelType>::ValueType> SparsePcaaWeightVectorChecker<SparseModelType>::getOverApproximationOfInitialStateResults() const {
STORM_LOG_THROW(checkHasBeenCalled, storm::exceptions::IllegalFunctionCallException, "Tried to retrieve results but check(..) has not been called before.");
uint_fast64_t initstate = *this->model.getInitialStates().begin();
std::vector<ValueType> res;
res.reserve(this->objectives.size());
for(uint_fast64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
res.push_back(this->objectiveResults[objIndex][initstate] + this->offsetsToUpperBound[objIndex]);
res.push_back(this->objectiveResults[objIndex][initstate] + this->offsetsToOverApproximation[objIndex]);
}
return res;
}
@ -218,8 +217,8 @@ namespace storm {
for (uint_fast64_t const &objIndex : storm::utility::vector::getSortedIndices(weightVector)) {
auto const& obj = objectives[objIndex];
if (objectivesWithNoUpperTimeBound.get(objIndex)) {
offsetsToLowerBound[objIndex] = storm::utility::zero<ValueType>();
offsetsToUpperBound[objIndex] = storm::utility::zero<ValueType>();
offsetsToUnderApproximation[objIndex] = storm::utility::zero<ValueType>();
offsetsToOverApproximation[objIndex] = storm::utility::zero<ValueType>();
storm::utility::vector::selectVectorValues(deterministicStateRewards, this->scheduler.getChoices(), model.getTransitionMatrix().getRowGroupIndices(), discreteActionRewards[objIndex]);
storm::storage::BitVector statesWithRewards = ~storm::utility::vector::filterZero(deterministicStateRewards);
// As maybestates we pick the states from which a state with reward is reachable

37
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

@ -14,8 +14,8 @@ namespace storm {
/*!
* Helper Class that takes preprocessed Pcaa data and a weight vector and ...
* - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this maximum
* - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this optimum
* - computes for each objective the value induced by this scheduler
*/
template <class SparseModelType>
@ -41,8 +41,8 @@ namespace storm {
virtual ~SparsePcaaWeightVectorChecker() = default;
/*!
* - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this maximum
* - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this optimum
* - computes for each objective the value induced by this scheduler
*/
void check(std::vector<ValueType> const& weightVector);
@ -50,19 +50,19 @@ namespace storm {
/*!
* Retrieves the results of the individual objectives at the initial state of the given model.
* Note that check(..) has to be called before retrieving results. Otherwise, an exception is thrown.
* Also note that there is no guarantee that the lower/upper bounds are sound
* Also note that there is no guarantee that the under/over approximation is in fact correct
* as long as the underlying solution methods are unsound (e.g., standard value iteration).
*/
std::vector<ValueType> getLowerBoundsOfInitialStateResults() const;
std::vector<ValueType> getUpperBoundsOfInitialStateResults() const;
std::vector<ValueType> getUnderApproximationOfInitialStateResults() const;
std::vector<ValueType> getOverApproximationOfInitialStateResults() const;
/*!
* Sets the precision of this weight vector checker. After calling check() the following will hold:
* Let h_lower and h_upper be two hyperplanes such that
* * the normal vector is the provided weight-vector
* * getLowerBoundsOfInitialStateResults() lies on h_lower and
* * getUpperBoundsOfInitialStateResults() lies on h_upper.
* * the normal vector is the provided weight-vector where the entry for minimizing objectives is negated
* * getUnderApproximationOfInitialStateResults() lies on h_lower and
* * getOverApproximationOfInitialStateResults() lies on h_upper.
* Then the distance between the two hyperplanes is at most weightedPrecision
*/
void setWeightedPrecision(ValueType const& weightedPrecision);
@ -82,7 +82,7 @@ namespace storm {
protected:
/*!
* Determines the scheduler that maximizes the weighted reward vector of the unbounded objectives
* Determines the scheduler that optimizes the weighted reward vector of the unbounded objectives
*
* @param weightedRewardVector the weighted rewards (only considering the unbounded objectives)
*/
@ -134,12 +134,7 @@ namespace storm {
storm::storage::BitVector objectivesWithNoUpperTimeBound;
// stores the (discretized) state action rewards for each objective.
std::vector<std::vector<ValueType>> discreteActionRewards;
/* stores the precision of this weight vector checker. After calling check() the following will hold:
* Let h_lower and h_upper be two hyperplanes such that
* * the normal vector is the provided weight-vector
* * getLowerBoundsOfInitialStateResults() lies on h_lower and
* * getUpperBoundsOfInitialStateResults() lies on h_upper.
* Then the distance between the two hyperplanes is at most weightedPrecision */
// stores the precision of this weight vector checker.
ValueType weightedPrecision;
// Memory for the solution of the most recent call of check(..)
// becomes true after the first call of check(..)
@ -148,11 +143,11 @@ namespace storm {
std::vector<ValueType> weightedResult;
// The results for the individual objectives (w.r.t. all states of the model)
std::vector<std::vector<ValueType>> objectiveResults;
// Stores for each objective the distance between the computed result (w.r.t. the initial state) and a lower/upper bound for the actual result.
// Stores for each objective the distance between the computed result (w.r.t. the initial state) and an over/under approximation for the actual result.
// The distances are stored as a (possibly negative) offset that has to be added (+) to to the objectiveResults.
std::vector<ValueType> offsetsToLowerBound;
std::vector<ValueType> offsetsToUpperBound;
// The scheduler that maximizes the weighted rewards
std::vector<ValueType> offsetsToUnderApproximation;
std::vector<ValueType> offsetsToOverApproximation;
// The scheduler that optimizes the weighted rewards
storm::storage::TotalScheduler scheduler;
};
Loading…
Cancel
Save