@ -320,80 +320,124 @@ namespace storm {
typename storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix = this - > getModel ( ) . getTransitionMatrix ( ) ;
typename storm : : storage : : SparseMatrix < ValueType > const & transitionMatrix = this - > getModel ( ) . getTransitionMatrix ( ) ;
// First we check which states are in BSCCs. We use this later to speed up reachability analysis
// First we check which states are in BSCCs. We use this later to speed up reachability analysis
storm : : storage : : BitVector statesNotInBsccs ( numOfStates , true ) ;
std : : vector < uint_fast64_t > stateToBsccIndexMap ( model . getNumberOfStates ( ) ) ;
storm : : storage : : BitVector statesInBsccs ( numOfStates ) ;
std : : vector < uint_fast64_t > stateToBsccIndexMap ( transitionMatrix . getColumnCount ( ) ) ;
for ( uint_fast64_t currentBsccIndex = 0 ; currentBsccIndex < bsccDecomposition . size ( ) ; + + currentBsccIndex ) {
for ( uint_fast64_t currentBsccIndex = 0 ; currentBsccIndex < bsccDecomposition . size ( ) ; + + currentBsccIndex ) {
storm : : storage : : StronglyConnectedComponent const & bscc = bsccDecomposition [ currentBsccIndex ] ;
storm : : storage : : StronglyConnectedComponent const & bscc = bsccDecomposition [ currentBsccIndex ] ;
// Gather information for later use.
// Gather information for later use.
for ( auto const & state : bscc ) {
for ( auto const & state : bscc ) {
statesNot InBsccs . set ( state , fals e ) ;
statesInBsccs . set ( state ) ;
stateToBsccIndexMap [ state ] = currentBsccIndex ;
stateToBsccIndexMap [ state ] = currentBsccIndex ;
}
}
}
}
uint_fast64_t numStatesNotInBsccs = statesNotInBsccs . size ( ) - statesNotInBsccs . getNumberOfSetBits ( ) ;
storm : : storage : : BitVector statesNotInBsccs = ~ statesInBsccs ;
// calculate steady state distribution for all BSCCs by calculating an eigenvector for the eigenvalue 1 of the transposed transition matrix for the bsccs
// calculate steady state distribution for all BSCCs by calculating an eigenvector for the eigenvalue 1 of the transposed transition matrix for the bsccs
std : : unique_ptr < storm : : solver : : LinearEquationSolver < ValueType > > solver = storm : : utility : : solver : : getLinearEquationSolver < ValueType > ( ) ;
std : : unique_ptr < storm : : solver : : LinearEquationSolver < ValueType > > solver = storm : : utility : : solver : : getLinearEquationSolver < ValueType > ( ) ;
storm : : storage : : SparseMatrix bsccEquationSystem = transitionMatrix . getSubmatrix ( false , ! statesNot InBsccs , ! statesNot InBsccs , true ) . transpose ( ) ;
storm : : storage : : SparseMatrix < ValueType > bsccEquationSystem = transitionMatrix . getSubmatrix ( false , statesInBsccs , statesInBsccs , true ) . transpose ( ) ;
ValueType one = storm : : utility : : one < ValueType > ( ) ;
ValueType one = storm : : utility : : one < ValueType > ( ) ;
ValueType zero = storm : : utility : : zero < ValueType > ( ) ;
ValueType zero = storm : : utility : : zero < ValueType > ( ) ;
for ( index_type row = 0 ; row < this - > getRowCount ( ) ; + + row ) {
for ( auto & entry : this - > getRow ( row ) ) {
for ( uint_fast64_t row = 0 ; row < bsccEquationSystem . getRowCount ( ) ; + + row ) {
for ( auto & entry : bsccEquationSystem . getRow ( row ) ) {
if ( entry . getColumn ( ) = = row ) {
if ( entry . getColumn ( ) = = row ) {
entry . setValue ( entry . getValue ( ) - one ) ;
entry . setValue ( entry . getValue ( ) - one ) ;
}
}
}
}
}
}
std : : vector < ValueType > bsccEquationSystemRightSide ( numStatesNotInBsccs , zero ) ;
std : : vector < ValueType > bsccEquationSystemSolution ( numStatesNotInBsccs , one ) ;
std : : vector < ValueType > bsccEquationSystemRightSide ( bsccEquationSystem . getColumnCount ( ) , zero ) ;
std : : vector < ValueType > bsccEquationSystemSolution ( bsccEquationSystem . getColumnCount ( ) , one ) ;
solver - > solveEquationSystem ( bsccEquationSystem , bsccEquationSystemSolution , bsccEquationSystemRightSide ) ;
solver - > solveEquationSystem ( bsccEquationSystem , bsccEquationSystemSolution , bsccEquationSystemRightSide ) ;
//calculate LRA Value for each BSCC from steady state distribution in BSCCs
//calculate LRA Value for each BSCC from steady state distribution in BSCCs
// we have to do some scaling, as the probabilities for each BSCC have to sum up to one, which they don't necessarily do in the solution of the equation system
// we have to do some scaling, as the probabilities for each BSCC have to sum up to one, which they don't necessarily do in the solution of the equation system
vector < ValueType > bsccLra ( bsccDecomposition . size ( ) , zero ) ;
vector < ValueType > bsccTotalValue ( bsccDecomposition . size ( ) , zero ) ;
for ( size_t i = 0 , auto stateIter = ! statesNotInBsccs . begin ( ) ; stateIter ! = ! statesNotInBsccs . end ( ) ; + + i , + + stateIter ) {
std : : vector < ValueType > bsccLra ( bsccDecomposition . size ( ) , zero ) ;
std : : vector < ValueType > bsccTotalValue ( bsccDecomposition . size ( ) , zero ) ;
size_t i = 0 ;
for ( auto stateIter = statesInBsccs . begin ( ) ; stateIter ! = statesInBsccs . end ( ) ; + + i , + + stateIter ) {
if ( psiStates . get ( * stateIter ) ) {
if ( psiStates . get ( * stateIter ) ) {
bsccLra [ stateToBsccIndexMap [ * stateIter ] ] + = bsccEquationSystemSolution [ i ] ;
bsccLra [ stateToBsccIndexMap [ * stateIter ] ] + = bsccEquationSystemSolution [ i ] ;
}
}
bsccTotalValue [ stateToBsccIndexMap [ * stateIter ] ] + = bsccEquationSystemSolution [ i ] ;
bsccTotalValue [ stateToBsccIndexMap [ * stateIter ] ] + = bsccEquationSystemSolution [ i ] ;
}
}
for ( size_t i = 0 ; i < bsccLra . size ( ) ; + + i ) {
for ( i = 0 ; i < bsccLra . size ( ) ; + + i ) {
bsccLra [ i ] / = bsccTotalValue [ i ] ;
bsccLra [ i ] / = bsccTotalValue [ i ] ;
}
}
// Prepare result vector.
std : : vector < ValueType > result ( numOfStates ) ;
//calculate LRA for states not in bsccs as expected reachability rewards
//target states are states in bsccs, transition reward is the lra of the bscc for each transition into a bscc and 0 otherwise
//this corresponds to sum of LRAs in BSCC weighted by the reachability probability of the BSCC
//now we calculate the long run average for each BSCC in isolation and compute the weighted contribution of the BSCC to the LRA value of all states
for ( uint_fast64_t currentBsccIndex = 0 ; currentBsccIndex < bsccDecomposition . size ( ) ; + + currentBsccIndex ) {
storm : : storage : : StronglyConnectedComponent const & bscc = bsccDecomposition [ currentBsccIndex ] ;
std : : vector < ValueType > rewardRightSide ;
rewardRightSide . reserve ( statesNotInBsccs . getNumberOfSetBits ( ) ) ;
storm : : storage : : BitVector statesInThisBscc ( numOfStates ) ;
for ( auto const & state : bscc ) {
statesInThisBscc . set ( state ) ;
for ( auto state : statesNotInBsccs ) {
ValueType reward = zero ;
for ( auto entry : transitionMatrix . getRow ( state ) ) {
if ( statesInBsccs . get ( entry . getColumn ( ) ) ) {
reward + = entry . getValue ( ) * bsccLra [ stateToBsccIndexMap [ entry . getColumn ( ) ] ] ;
}
}
rewardRightSide . push_back ( reward ) ;
}
}
//ValueType lraForThisBscc = this->computeLraForBSCC(transitionMatrix, psiStates, bscc);
ValueType lraForThisBscc = bsccLra [ currentBsccIndex ] ;
storm : : storage : : SparseMatrix < ValueType > rewardEquationSystemMatrix = transitionMatrix . getSubmatrix ( false , statesNotInBsccs , statesNotInBsccs ) ;
rewardEquationSystemMatrix . convertToEquationSystem ( ) ;
//the LRA value of a BSCC contributes to the LRA value of a state with the probability of reaching that BSCC from that state
//thus we add Prob(Eventually statesInThisBscc) * lraForThisBscc to the result vector
std : : vector < ValueType > rewardSolution ( rewardEquationSystemMatrix . getColumnCount ( ) , one ) ;
//the reachability probabilities will be zero in other BSCCs, thus we can set the left operand of the until formula to statesNotInBsccs as an optimization
std : : vector < ValueType > reachProbThisBscc = this - > computeUntilProbabilitiesHelper ( statesNotInBsccs , statesInThisBscc , false ) ;
solver - > solveEquationSystem ( rewardEquationSystemMatrix , rewardSolution , rewardRightSide ) ;
// now fill the result vector
std : : vector < ValueType > result ( numOfStates ) ;
storm : : utility : : vector : : scaleVectorInPlace < ValueType > ( reachProbThisBscc , lraForThisBscc ) ;
storm : : utility : : vector : : addVectorsInPlace < ValueType > ( result , reachProbThisBscc ) ;
auto rewardSolutionIter = rewardSolution . begin ( ) ;
for ( size_t state = 0 ; state < numOfStates ; + + state ) {
if ( statesInBsccs . get ( state ) ) {
//assign the value of the bscc the state is in
result [ state ] = bsccLra [ stateToBsccIndexMap [ state ] ] ;
} else {
assert ( rewardSolutionIter ! = rewardSolution . end ( ) ) ;
//take the value from the reward computation
//since the n-th state not in any bscc is the n-th entry in rewardSolution we can just take the next value from the iterator
result [ state ] = * rewardSolutionIter ;
+ + rewardSolutionIter ;
}
}
}
return result ;
return result ;
//old implementeation
//now we calculate the long run average for each BSCC in isolation and compute the weighted contribution of the BSCC to the LRA value of all states
//for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
// storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
// storm::storage::BitVector statesInThisBscc(numOfStates);
// for (auto const& state : bscc) {
// statesInThisBscc.set(state);
// }
// //ValueType lraForThisBscc = this->computeLraForBSCC(transitionMatrix, psiStates, bscc);
// ValueType lraForThisBscc = bsccLra[currentBsccIndex];
// //the LRA value of a BSCC contributes to the LRA value of a state with the probability of reaching that BSCC from that state
// //thus we add Prob(Eventually statesInThisBscc) * lraForThisBscc to the result vector
// //the reachability probabilities will be zero in other BSCCs, thus we can set the left operand of the until formula to statesNotInBsccs as an optimization
// std::vector<ValueType> reachProbThisBscc = this->computeUntilProbabilitiesHelper(statesNotInBsccs, statesInThisBscc, false);
//
// storm::utility::vector::scaleVectorInPlace<ValueType>(reachProbThisBscc, lraForThisBscc);
// storm::utility::vector::addVectorsInPlace<ValueType>(result, reachProbThisBscc);
//}
//return result;
}
}
template < typename ValueType >
template < typename ValueType >