@ -42,12 +42,12 @@ namespace storm {
}
template < typename ValueType >
void TopologicalValueIterationNondeterministicLinearEquationSolver < ValueType > : : solveEquationSystem ( bool minimize , storm : : storage : : SparseMatrix < ValueType > const & A , std : : vector < ValueType > & x , std : : vector < ValueType > const & b , std : : vector < uint_fast64_t > const & nondeterministicChoiceIndices , std : : vector < ValueType > * multiplyResult , std : : vector < ValueType > * newX ) const {
void TopologicalValueIterationNondeterministicLinearEquationSolver < ValueType > : : solveEquationSystem ( bool minimize , storm : : storage : : SparseMatrix < ValueType > const & A , std : : vector < ValueType > & x , std : : vector < ValueType > const & b , std : : vector < ValueType > * multiplyResult , std : : vector < ValueType > * newX ) const {
// Now, we need to determine the SCCs of the MDP and a topological sort.
//std::vector<std::vector<uint_fast64_t>> stronglyConnectedComponents = storm::utility::graph::performSccDecomposition(this->getModel(), stronglyConnectedComponents, stronglyConnectedComponentsDependencyGraph);
//storm::storage::SparseMatrix<T> stronglyConnectedComponentsDependencyGraph = this->getModel().extractSccDependencyGraph(stronglyConnectedComponents);
std : : vector < uint_fast64_t > const & nondeterministicChoiceIndices = A . getRowGroupIndices ( ) ;
storm : : models : : NonDeterministicMatrixBasedPseudoModel < ValueType > pseudoModel ( A , nondeterministicChoiceIndices ) ;
//storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(*static_cast<storm::models::AbstractPseudoModel<ValueType>*>(&pseudoModel), false, false);
storm : : storage : : StronglyConnectedComponentDecomposition < ValueType > sccDecomposition ( pseudoModel , false , false ) ;
@ -60,6 +60,9 @@ namespace storm {
storm : : storage : : SparseMatrix < ValueType > stronglyConnectedComponentsDependencyGraph = pseudoModel . extractPartitionDependencyGraph ( sccDecomposition ) ;
std : : vector < uint_fast64_t > topologicalSort = storm : : utility : : graph : : getTopologicalSort ( stronglyConnectedComponentsDependencyGraph ) ;
// Calculate the optimal distribution of sccs
std : : vector < std : : pair < bool , std : : vector < uint_fast64_t > > > optimalSccs = this - > getOptimalGroupingFromTopologicalSccDecomposition ( sccDecomposition , topologicalSort , A ) ;
// Set up the environment for the power method.
// bool multiplyResultMemoryProvided = true;
// if (multiplyResult == nullptr) {
@ -82,12 +85,13 @@ namespace storm {
// solved after all SCCs it depends on have been solved.
int counter = 0 ;
for ( auto sccIndexIt = topologicalSort . begin ( ) ; sccIndexIt ! = topologicalSort . end ( ) & & converged ; + + sccIndexIt ) {
storm : : storage : : StateBlock const & scc = sccDecomposition [ * sccIndexIt ] ;
for ( auto sccIndexIt = optimalSccs . cbegin ( ) ; sccIndexIt ! = optimalSccs . cend ( ) & & converged ; + + sccIndexIt ) {
bool const useGpu = sccIndexIt - > first ;
std : : vector < uint_fast64_t > const & scc = sccIndexIt - > second ;
// Generate a submatrix
storm : : storage : : BitVector subMatrixIndices ( A . getColumnCount ( ) , scc . cbegin ( ) , scc . cend ( ) ) ;
storm : : storage : : SparseMatrix < ValueType > sccSubmatrix = A . getSubmatrix ( subMatrixIndices , nondeterministicChoice Indices) ;
storm : : storage : : SparseMatrix < ValueType > sccSubmatrix = A . getSubmatrix ( true , subMatrixIndices , subMatrix Indices) ;
std : : vector < ValueType > sccSubB ( sccSubmatrix . getRowCount ( ) ) ;
storm : : utility : : vector : : selectVectorValues < ValueType > ( sccSubB , subMatrixIndices , nondeterministicChoiceIndices , b ) ;
std : : vector < ValueType > sccSubX ( sccSubmatrix . getColumnCount ( ) ) ;
@ -125,108 +129,115 @@ namespace storm {
}
// For the current SCC, we need to perform value iteration until convergence.
if ( useGpu ) {
# ifdef STORM_HAVE_CUDAFORSTORM
if ( ! resetCudaDevice ( ) ) {
LOG4CPLUS_ERROR ( logger , " Could not reset CUDA Device, can not use CUDA Equation Solver. " ) ;
throw storm : : exceptions : : InvalidStateException ( ) < < " Could not reset CUDA Device, can not use CUDA Equation Solver. " ;
}
LOG4CPLUS_INFO ( logger , " Device has " < < getTotalCudaMemory ( ) < < " Bytes of Memory with " < < getFreeCudaMemory ( ) < < " Bytes free ( " < < ( static_cast < double > ( getFreeCudaMemory ( ) ) / static_cast < double > ( getTotalCudaMemory ( ) ) ) * 100 < < " %). " ) ;
LOG4CPLUS_INFO ( logger , " We will allocate " < < ( sizeof ( uint_fast64_t ) * sccSubmatrix . rowIndications . size ( ) + sizeof ( uint_fast64_t ) * sccSubmatrix . columnsAndValues . size ( ) * 2 + sizeof ( double ) * sccSubX . size ( ) + sizeof ( double ) * sccSubX . size ( ) + sizeof ( double ) * sccSubB . size ( ) + sizeof ( double ) * sccSubB . size ( ) + sizeof ( uint_fast64_t ) * sccSubNondeterministicChoiceIndices . size ( ) ) < < " Bytes. " ) ;
LOG4CPLUS_INFO ( logger , " The CUDA Runtime Version is " < < getRuntimeCudaVersion ( ) ) ;
std : : vector < ValueType > copyX ( * currentX ) ;
if ( minimize ) {
basicValueIteration_mvReduce_uint64_double_minimize ( this - > maximalNumberOfIterations , this - > precision , this - > relative , sccSubmatrix . rowIndications , sccSubmatrix . columnsAndValues , copyX , sccSubB , sccSubNondeterministicChoiceIndices ) ;
}
else {
basicValueIteration_mvReduce_uint64_double_maximize ( this - > maximalNumberOfIterations , this - > precision , this - > relative , sccSubmatrix . rowIndications , sccSubmatrix . columnsAndValues , copyX , sccSubB , sccSubNondeterministicChoiceIndices ) ;
}
localIterations = 0 ;
converged = false ;
while ( ! converged & & localIterations < this - > maximalNumberOfIterations ) {
// Compute x' = A*x + b.
sccSubmatrix . multiplyWithVector ( * currentX , sccMultiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace < ValueType > ( sccMultiplyResult , sccSubB ) ;
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
if ( ! resetCudaDevice ( ) ) {
LOG4CPLUS_ERROR ( logger , " Could not reset CUDA Device, can not use CUDA Equation Solver. " ) ;
throw storm : : exceptions : : InvalidStateException ( ) < < " Could not reset CUDA Device, can not use CUDA Equation Solver. " ;
}
/*
Versus :
A . multiplyWithVector ( * currentX , * multiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace ( * multiplyResult , b ) ;
*/
LOG4CPLUS_INFO ( logger , " Device has " < < getTotalCudaMemory ( ) < < " Bytes of Memory with " < < getFreeCudaMemory ( ) < < " Bytes free ( " < < ( static_cast < double > ( getFreeCudaMemory ( ) ) / static_cast < double > ( getTotalCudaMemory ( ) ) ) * 100 < < " %). " ) ;
LOG4CPLUS_INFO ( logger , " We will allocate " < < ( sizeof ( uint_fast64_t ) * sccSubmatrix . rowIndications . size ( ) + sizeof ( uint_fast64_t ) * sccSubmatrix . columnsAndValues . size ( ) * 2 + sizeof ( double ) * sccSubX . size ( ) + sizeof ( double ) * sccSubX . size ( ) + sizeof ( double ) * sccSubB . size ( ) + sizeof ( double ) * sccSubB . size ( ) + sizeof ( uint_fast64_t ) * sccSubNondeterministicChoiceIndices . size ( ) ) < < " Bytes. " ) ;
LOG4CPLUS_INFO ( logger , " The CUDA Runtime Version is " < < getRuntimeCudaVersion ( ) ) ;
// Reduce the vector x' by applying min/max for all non-deterministic choices.
std : : vector < ValueType > copyX ( * currentX ) ;
if ( minimize ) {
storm : : utility : : vector : : reduceVectorMin < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
basicValueIteration_mvReduce_uint64_double_minimize ( this - > maximalNumberOfIterations , this - > precision , this - > relative , sccSubmatrix . rowIndications , sccSubmatrix . columnsAndValues , copyX , sccSubB , sccSubNondeterministicChoiceIndices ) ;
}
else {
storm : : utility : : vector : : reduceVectorMax < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
basicValueIteration_mvReduce_uint64_double_maximize ( this - > maximalNumberOfIterations , this - > precision , this - > relative , sccSubmatrix . rowIndications , sccSubmatrix . columnsAndValues , copyX , sccSubB , sccSubNondeterministicChoiceIndices ) ;
}
converged = true ;
// DEBUG
localIterations = 0 ;
converged = false ;
while ( ! converged & & localIterations < this - > maximalNumberOfIterations ) {
// Compute x' = A*x + b.
sccSubmatrix . multiplyWithVector ( * currentX , sccMultiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace < ValueType > ( sccMultiplyResult , sccSubB ) ;
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus :
A . multiplyWithVector ( * currentX , * multiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace ( * multiplyResult , b ) ;
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if ( minimize ) {
storm : : utility : : vector : : reduceVectorMin < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
}
else {
storm : : utility : : vector : : reduceVectorMax < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm : : utility : : vector : : equalModuloPrecision < ValueType > ( * currentX , * swap , this - > precision , this - > relative ) ;
// Update environment variables.
std : : swap ( currentX , swap ) ;
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm : : utility : : vector : : equalModuloPrecision < ValueType > ( * currentX , * swap , this - > precision , this - > relative ) ;
+ + localIterations ;
+ + globalIterations ;
}
LOG4CPLUS_INFO ( logger , " Executed " < < localIterations < < " of max. " < < maximalNumberOfIterations < < " Iterations. " ) ;
// Update environment variables.
std : : swap ( currentX , swap ) ;
uint_fast64_t diffCount = 0 ;
for ( size_t i = 0 ; i < currentX - > size ( ) ; + + i ) {
if ( currentX - > at ( i ) ! = copyX . at ( i ) ) {
LOG4CPLUS_WARN ( logger , " CUDA solution differs on index " < < i < < " diff. " < < std : : abs ( currentX - > at ( i ) - copyX . at ( i ) ) < < " , CPU: " < < currentX - > at ( i ) < < " , CUDA: " < < copyX . at ( i ) ) ;
std : : cout < < " CUDA solution differs on index " < < i < < " diff. " < < std : : abs ( currentX - > at ( i ) - copyX . at ( i ) ) < < " , CPU: " < < currentX - > at ( i ) < < " , CUDA: " < < copyX . at ( i ) < < std : : endl ;
+ + localIterations ;
+ + globalIterations ;
}
}
# else
localIterations = 0 ;
converged = false ;
while ( ! converged & & localIterations < this - > maximalNumberOfIterations ) {
// Compute x' = A*x + b.
sccSubmatrix . multiplyWithVector ( * currentX , sccMultiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace < ValueType > ( sccMultiplyResult , sccSubB ) ;
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus :
A . multiplyWithVector ( * currentX , * multiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace ( * multiplyResult , b ) ;
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if ( minimize ) {
storm : : utility : : vector : : reduceVectorMin < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
}
else {
storm : : utility : : vector : : reduceVectorMax < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
LOG4CPLUS_INFO ( logger , " Executed " < < localIterations < < " of max. " < < maximalNumberOfIterations < < " Iterations. " ) ;
uint_fast64_t diffCount = 0 ;
for ( size_t i = 0 ; i < currentX - > size ( ) ; + + i ) {
if ( currentX - > at ( i ) ! = copyX . at ( i ) ) {
LOG4CPLUS_WARN ( logger , " CUDA solution differs on index " < < i < < " diff. " < < std : : abs ( currentX - > at ( i ) - copyX . at ( i ) ) < < " , CPU: " < < currentX - > at ( i ) < < " , CUDA: " < < copyX . at ( i ) ) ;
std : : cout < < " CUDA solution differs on index " < < i < < " diff. " < < std : : abs ( currentX - > at ( i ) - copyX . at ( i ) ) < < " , CPU: " < < currentX - > at ( i ) < < " , CUDA: " < < copyX . at ( i ) < < std : : endl ;
+ + diffCount ;
}
}
std : : cout < < " CUDA solution differed in " < < diffCount < < " of " < < currentX - > size ( ) < < " values. " < < std : : endl ;
# endif
} else {
localIterations = 0 ;
converged = false ;
while ( ! converged & & localIterations < this - > maximalNumberOfIterations ) {
// Compute x' = A*x + b.
sccSubmatrix . multiplyWithVector ( * currentX , sccMultiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace < ValueType > ( sccMultiplyResult , sccSubB ) ;
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus :
A . multiplyWithVector ( * currentX , * multiplyResult ) ;
storm : : utility : : vector : : addVectorsInPlace ( * multiplyResult , b ) ;
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if ( minimize ) {
storm : : utility : : vector : : reduceVectorMin < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
}
else {
storm : : utility : : vector : : reduceVectorMax < ValueType > ( sccMultiplyResult , * swap , sccSubNondeterministicChoiceIndices ) ;
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm : : utility : : vector : : equalModuloPrecision < ValueType > ( * currentX , * swap , this - > precision , this - > relative ) ;
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm : : utility : : vector : : equalModuloPrecision < ValueType > ( * currentX , * swap , this - > precision , this - > relative ) ;
// Update environment variables.
std : : swap ( currentX , swap ) ;
// Update environment variables.
std : : swap ( currentX , swap ) ;
+ + localIterations ;
+ + globalIterations ;
+ + localIterations ;
+ + globalIterations ;
}
LOG4CPLUS_INFO ( logger , " Executed " < < localIterations < < " of max. " < < maximalNumberOfIterations < < " Iterations. " ) ;
}
LOG4CPLUS_INFO ( logger , " Executed " < < localIterations < < " of max. " < < maximalNumberOfIterations < < " Iterations. " ) ;
# endif
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0 ;
@ -263,6 +274,72 @@ namespace storm {
}
}
template < typename ValueType >
std : : vector < std : : pair < bool , std : : vector < uint_fast64_t > > >
TopologicalValueIterationNondeterministicLinearEquationSolver < ValueType > : : getOptimalGroupingFromTopologicalSccDecomposition ( storm : : storage : : StronglyConnectedComponentDecomposition < ValueType > const & sccDecomposition , std : : vector < uint_fast64_t > const & topologicalSort , storm : : storage : : SparseMatrix < ValueType > const & matrix ) const {
std : : vector < std : : pair < bool , std : : vector < uint_fast64_t > > > result ;
# ifdef STORM_HAVE_CUDAFORSTORM
// 95% to have a bit of padding
size_t const cudaFreeMemory = static_cast < size_t > ( getFreeCudaMemory ( ) * 0.95 ) ;
size_t lastResultIndex = 0 ;
std : : vector < uint_fast64_t > const & rowGroupIndices = matrix . getRowGroupIndices ( ) ;
size_t currentSize = 0 ;
for ( auto sccIndexIt = topologicalSort . cbegin ( ) ; sccIndexIt ! = topologicalSort . cend ( ) ; + + sccIndexIt ) {
storm : : storage : : StateBlock const & scc = sccDecomposition [ * sccIndexIt ] ;
uint_fast64_t rowCount = 0 ;
uint_fast64_t entryCount = 0 ;
std : : vector < uint_fast64_t > rowGroups ;
rowGroups . reserve ( scc . size ( ) ) ;
for ( auto sccIt = scc . cbegin ( ) ; sccIt ! = scc . cend ( ) ; + + sccIt ) {
rowCount + = matrix . getRowGroupSize ( * sccIt ) ;
entryCount + = matrix . getRowGroupEntryCount ( * sccIt ) ;
rowGroups . push_back ( * sccIt ) ;
}
size_t sccSize = basicValueIteration_mvReduce_uint64_double_calculateMemorySize ( static_cast < size_t > ( rowCount ) , scc . size ( ) , static_cast < size_t > ( entryCount ) ) ;
if ( ( currentSize + sccSize ) < = cudaFreeMemory ) {
// There is enough space left in the current group
if ( currentSize = = 0 ) {
result . push_back ( std : : make_pair ( true , rowGroups ) ) ;
}
else {
result [ lastResultIndex ] . second . insert ( result [ lastResultIndex ] . second . end ( ) , rowGroups . begin ( ) , rowGroups . end ( ) ) ;
}
currentSize + = sccSize ;
}
else {
if ( sccSize < = cudaFreeMemory ) {
+ + lastResultIndex ;
result . push_back ( std : : make_pair ( true , rowGroups ) ) ;
currentSize = sccSize ;
}
else {
// This group is too big to fit into the CUDA Memory by itself
lastResultIndex + = 2 ;
result . push_back ( std : : make_pair ( false , rowGroups ) ) ;
currentSize = 0 ;
}
}
}
# else
for ( auto sccIndexIt = topologicalSort . cbegin ( ) ; sccIndexIt ! = topologicalSort . cend ( ) ; + + sccIndexIt ) {
storm : : storage : : StateBlock const & scc = sccDecomposition [ * sccIndexIt ] ;
std : : vector < uint_fast64_t > rowGroups ;
rowGroups . reserve ( scc . size ( ) ) ;
for ( auto sccIt = scc . cbegin ( ) ; sccIt ! = scc . cend ( ) ; + + sccIt ) {
rowGroups . push_back ( * sccIt ) ;
result . push_back ( std : : make_pair ( false , rowGroups ) ) ;
}
}
# endif
return result ;
}
// Explicitly instantiate the solver.
template class TopologicalValueIterationNondeterministicLinearEquationSolver < double > ;
} // namespace solver